# **Assessment of the Deep-water Fish Resource of the New Zealand Area**





**Fisheries Research Division Occasional Publication No. 21** 

# Assessment of the Deep-water Fish Resource of the New Zealand Area

by R. C. Francis\* and K. A. Fisher

\*Present address: National Marine Fisheries Service, Seattle, Washington, U.S.A.

Fisheries Research Division Occasional Publication No. 21 1979

## Contents

| F                                                    | Puge        |
|------------------------------------------------------|-------------|
| Introduction                                         | 3           |
| The Fishery<br>Deep-water fishing grounds<br>Vessels | 5<br>5<br>6 |
| Estimation                                           | 9           |
| Fishery Potential                                    | 20          |
| Discussion                                           | 22          |
| Acknowledgments                                      | 26          |
| References                                           | 26          |
| Appendix 1                                           | 27          |
| Appendix 2                                           | 30          |

Published by the New Zealand Ministry of Agriculture and Fisheries Wellington 1979

.

ISSN 0110-1765

## Introduction

The objective of this work is to provide an immediate crude assessment of the status and potential of the deep-water demersal fishery resource of the New Zealand 200-mile Exclusive Economic Zone (EEZ) (Fig. 1). The reasons for this are twofold. First, New Zealand officially declared jurisdiction over a 200-mile EEZ on 1 April 1978. With this declaration came the responsibility to manage the fisheries of the EEZ to promote optimum use of stocks within the zone (Beeby 1975). Therefore immediate scientific advice had to be provided to enable management of the foreign fishery exploiting the resource. Second, scientific assessments are needed to help plan the future course of the fishery. As will become evident, these two needs require different approaches to scientific assessment.

The direct estimates made here depend entirely on data provided from the activities of Japanese research and commercial vessels fishing in New Zealand waters from October 1975 to February 1977.



Fig. 1: The New Zealand 200-mile Exclusive Economic Zone and deep-water fishing areas.



Fig. 2: Major bathymetric features, surface currents, place names, and topographic features of the New Zealand region.

4

## **The Fishery**

Two distinct demersal fisheries operate inside the New Zealand EEZ (Fig. 1). First, there is the coastal trawl, long-line, and set-net fishery which operates largely around the North Island in depths ranging from 0 to 200 m. Recent annual catches have been about 60 000 t (40 000 New Zealand and 20 000 foreign). The main species are snapper (*Chrysophrys auratus*), tarakihi (*Cheilodactylus macropterus*), trevally (*Caranx georgianus*), barracouta (*Thyrsites atun*), and jack mackerels (*Trachurus declivis* and *T. novaezelandiae*).

Second, there is the deep-water trawl and bottom long-line fishery which operates around the South Island (Areas 1, 4, and 5), on the Chatham Rise (Area 2), and on the Campbell Plateau-Bounty Platform (Area 3) (Fig. 1). This fishery, almost exclusively foreign so far, operates in depths ranging from 200 to 1000 m. Heavy exploitation in this fishery started in the early 1970s when large trawlers from the Soviet Union began fishing the deeper waters along the east coast of the South Island and the vast trawlable expanse of the Campbell Plateau-Bounty Platform. At the same time the Japanese expanded their coastal trawling operations into the deeper waters along the east coast of the South Island and began to explore the potential for bottom long-lining in various areas around New Zealand. The total deep-water demersal catch for 1971-75 averaged about 100 000 t and was evenly divided between Japan and the Soviet Union.

In 1976 the catch rose to about 200 000 t. Part of this increase was due to the establishment of the Japanese bottom long-line fishery on the south side of the Chatham Rise (Area 2) and part was due to the expansion of the Japanese trawl fishery into areas along the edge of the shelf to the east and south of Stewart Island (Area 4) and along the west coast of the South Island (Area 5) (Fig. 1). The Japanese commercial trawlers were guided on to heavy concentrations of silver warehou (Seriolella punctata) in the Southland shelf area in December 1975 and January 1976 and hoki (Macruronus novaezelandiae), English hake (Merluccius australis), and barracouta along the west coast of the South Island from May to September 1976 by the Japan Marine Fishery Resource Research Center (JAMARC) exploratory fishing stern trawler Shinkai Maru. The fishing data provided by this vessel served as the basis for the estimates made in this paper. In 1977 the deep-water demersal catch again increased to about 380 000 t as a result of increases in effort by Japan and the Soviet Union and the entrance of South Korean trawlers and bottom long-liners into the fishery.

The main species in the deep-water trawl fishery of recent years has been hoki, a deep-water hake which is caught in both the subtropical waters of Areas 1, 2, and 5 and the subantarctic waters of Area 3. Hoki made up more than 35% of the 1976 deep-water trawl catch. The main species (75% of the 1976 catch) in the bottom long-line fishery is ling (*Genypterus blacodes*). Illustrations and descriptions of the major species exploited in the New Zealand deep-water demersal fishery, as well as species codes used later in this publication, are given in Appendix 1.

#### **Deep-water fishing grounds**

The most important deep-water fishing grounds are shown in Fig. 1. Figure 2 shows the major physical features of the region.

#### East coast, South Island (Area 1)

A significant trawl fishery exists here throughout the year. The major species caught are hoki, barracouta, red cod (*Pseudophycis bacchus*), warehou, jack mackerels, and arrow squid (*Nototodarus sloanii*). The estimated 1977 deep-water catch was 83 000 t.

#### Chatham Rise (Area 2)

This area supports a year-long trawl fishery along its north and west boundaries as well as most of the bottom long-line fishery along its southern boundary. The major species caught in the trawl fishery are hoki and silver warehou and in the bottom long-line fishery, ling. The estimated 1977 deepwater catch was 52 000 t (32 000 by trawl and 20 000 by bottom long-line).

#### **Campbell Plateau-Bounty Platform (Area 3)**

This vast area of subantarctic water has supported a year-long trawl fishery, though recently most of the fishing has been in summer. The major species caught are squid and hoki along the western boundary (in the area of the Auckland Islands) and southern blue whiting (*Micromesistius australis*) in spring and summer on the Campbell Plateau and in winter on the Bounty Platform, where they are reported to spawn (Shpack 1978). The estimated 1977 deep-water catch was 70 000 t.

#### Southland (Area 4)

This area has supported a sporadic summer trawl fishery. The major species caught are silver warehou and squid along the eastern boundary and ling along the western boundary. The estimated 1977 deepwater catch was 28 000 t.

#### West coast, South Island (Area 5)

This area supports a winter and spring trawl fishery for spawning concentrations of hoki, hake, and barracouta. Extremely high catch rates of more than 50 t per hour have been recorded. The estimated 1977 deep-water catch was 125 000 t.

#### Vessels

The most common fishing vessels in the deep-water fishery are 1000- to 4000-GRT factory stern trawlers

(up to 120 m in length). Table 1 shows the 1976 Japanese trawl catch and effort by size class. The high catch rate recorded by size class 6 was due to two boats fishing mainly in Area 5 at the height of the winter season with high-opening nets. Unfortunately no comparable records are available for Soviet fishing. In addition to large factory stern trawlers (up to 85 m), the Soviets use smaller (55 m) side trawlers to fish for squid in Area 3 around the Auckland Islands. Most bottom long-line vessels are modified tuna long-liners ranging in length from 45 to 60 m, with a gross tonnage of up to 300 t. Catch rates range from 5 to 15 t per day. Examples of fishing vessels are shown in Figs. 3–6.

#### TABLE 1: Japanese trawl catch and effort (1976) by size class

| GRT         | Size<br>class | Days<br>fished | Catch<br>(t) | Catch rate<br>(t/day) |
|-------------|---------------|----------------|--------------|-----------------------|
| 550-1 000   | 3             | 5              | 32           | 6.40                  |
| 1 000-1 500 | 4             | 977            | 21 504       | 22.01                 |
| 1 500-2 000 | 5             | 915            | 14 583       | 15.94                 |
| 2 000-2 500 | 6             | 131            | 12 927       | 98.68                 |
| 2 500-3 000 | 7             | 785            | 32 738       | 41.70                 |
| 3 000-4 000 | 8             | 447            | 18 663       | 41.75                 |
| Total       |               | 3 260          | 100 447      | 30.81                 |





Fig. 3: Japanese stern trawler.



Fig. 4: Japanese bottom long-liner.



Fig. 5: Soviet RTM factory stern trawler.



Fig. 6: Soviet SRTM side trawler.

## Estimation

Since the inception of the New Zealand 200-mile EEZ several estimates of deep-water demersal resource potential have been put forward. The Fishery Agency of Japan (Anon. 1978a) estimates the total (coastal and deep-water) demersal biomass to be 8.792 million t with a maximum sustainable yield (MSY) of 879 000 t. Shpack (1978) estimates the southern blue whiting standing stock of the Campbell Plateau-Bounty Platform to be as high as 1.24 million t with a MSY of 250 000 t. Blagodyorov and Nosov (1978) estimate the hoki population to the east and south-east of the South Island to range from 130 000 to 300 000 t with a safe biological yield of 34 000 to 75 000 t. Dudarev (1978) estimates the safe biological yield of deep-water dory (Neocittus rhomboidalis) to the east of the South Island to be 60 000 to 70 000 t. Finally, Nosov (1978) estimates the standing stock of jack mackerel (the Soviets recognise only one species, Trachurus declivis) to be about 800 000 t with a MSY of 140 000 t.

This is the first attempt to document not only the estimates of deep-water demersal standing stocks and potential catches, but the estimation procedures themselves. The estimates presented here depend entirely on two sources of data: detailed trawl-by-trawl records of the 3400-GRT Japanese research-exploratory fishing stern trawler FRV *Shinkai Maru* and summaries of Japanese commercial trawling activities in New Zealand waters for an overlapping time period.

Shinkai Maru worked the New Zealand deep-water fishing areas from October 1975 until February 1977\*. In that time the vessel fished for 300 days, made 1100 trawls, and caught a total of 9063 t of fish. Her characteristics were as follows: length 94.93 m; breadth 16.00 m moulded; tonnage 3393.23 GRT; horsepower 5000 PS; net, a commercial fourseam bottom trawl with headline length 50.00 m; average headline height 7.00 m; groundrope length 70.00 m; net length 89.70 m; doors 28.00 x 40.00 m; distance between wing-ends 39.00 m; cod-end, 100-mm double. Summaries of her four cruises are given in Fig. 7 and Table 2. Records of location, time of day, catch by species, average depth, average speed, time for haul, and surface and bottom temperature were available for each station.

The second major data base for our study was detailed catch and effort information from all Japanese commercial trawlers which fished the New Zealand area in 1975 and 1976. Summaries of catch by species and hours fished are given by month,  $\frac{1}{2}^{\circ}$  latitude by  $\frac{1}{2}^{\circ}$  longitude, and vessel size class. These data are summarised for the periods of the *Shinkai Maru* cruises in Table 2.

The primary intent of the four *Shinkai Maru* cruises was to determine where deep-water commercial trawling potential was greatest at various times of year in the New Zealand EEZ. The fishing plan was therefore to explore an area until commercial concentrations of fish were found and then, with the help of the Japanese commercial fleet, fish these concentrations as hard as possible. Obviously this is not an "ideal" experimental design for a groundfish survey (Jones and Pope 1973).

For the estimation of stock densities extensive stratification was required. The entire ground surveyed was divided into five areas based on historic fishing patterns and predominant species caught (see Fig. 1). Areas 2, 3, and 4 were each divided into two subareas because of non-homogeneity of both physical and biological characteristics. Separate estimates were made for each subarea before being combined into areal estimates. The Chatham Rise (Area 2) was divided into east and west subareas at 180°, the Campbell Plateau was separated from the Bounty Platform in Area 3, and Southland (Area 4) was divided into east and west subareas because of the basic faunal differences between the two sides of the Stewart Island shelf.

Preliminary analyses indicated that catch variation within areas was most significant with depth and location. Species tend to have preferred depths and they tend to aggregate spatially. In areas where there were diurnal fluctuations in catch rates, *Shinkai Maru* did most fishing during daylight hours. Therefore diurnal influences on catch rates were minimal. For these reasons, and since the Japanese commercial data were given by  $\frac{1}{2}^{\circ}$  squares, it was

<sup>\*</sup>Shinkai Maru data for April to August 1975 have recently come to our notice. These were not included in the original data set received from JAMARC, but they are now being analysed.



10



Figs. 7a and b (above and left): Number of Shinkai Maru stations in each ½° latitude by ½° longitude square, Cruises 1 and 2.



Fig. 7c: Number of Shinkai Maru stations in each 1/2 ° latitude by 1/2 ° longitude square, Cruise 3.



Fig. 7d: Number of *Shinkai Maru* stations in each  $\frac{1}{2}$ ° latitude by  $\frac{1}{2}$ ° longitude square, Cruise 4.

|               | Shinkai Maru    |                     |              | Japanese commercial |                |              |                    |
|---------------|-----------------|---------------------|--------------|---------------------|----------------|--------------|--------------------|
| Area          | No. of stations | Catch<br>(t)        | CPHF*        | Sp. (%)†            | Catch<br>(t)   | CPHF         | Sp. (%)            |
| Cruise 1 Oct  | 1975-Feb 1976   |                     |              |                     |                |              |                    |
| Ĩ             | 42              | 142.714             | 1.18         | HOK(43)             | 8 719          | 2.20         | —‡                 |
| 2E<br>2W      | 10<br>23        | 17.760<br>107.461   | 0.66<br>1.55 | HOK(57)<br>HOK(72)  | 31<br>150      | 0.89<br>1.92 | HOK(48)<br>HOK(66) |
| 3E<br>3W      | 6<br>86         | 8.377<br>730.540    | 0.40<br>2.05 | SBW(85)<br>SBW(79)  | 10<br>5 318    | 0.48<br>1.30 | SBW(70)<br>BUT(48) |
| 4E<br>4W      | 110<br>9        | 1 425.610<br>21.321 | 3.23<br>0.80 | SWA(80)<br>SKI(26)  | 9 370<br>43    | 2.76<br>1.16 | BUT(77)<br>BUT(38) |
| 5<br>6        | 42<br>16        | 257.924<br>18.978   | 2.02<br>0.54 | BAR(51)<br>FRO(45)  | 2 058<br>4 663 | 1.96<br>2.16 | BAR(39)<br>JMA(72) |
| Cruise 2 Apr  | -Jun 1976       |                     |              |                     |                |              |                    |
| 1             | 65              | 446.678             | 1.91         | HOK(39)             | 10 313         | 3.50         | HOK(20)            |
| 2E<br>2W      | 5<br>26         | 8.656<br>252.022    | 0.53<br>3.34 | HOK(35)<br>ORH(44)  | 7<br>1 011     | 0.70<br>6.40 |                    |
| 3E            | 6               | 29.238              | 1.48         | SBW(97)             | 30             | 1.50         | SBW(97)            |
| 4E            | 15              | 130.259             | 2.16         | SWA(83)             | 3 685          | 1.83         | BUT(58)            |
| 5             | 39              | 393.328             | 2.54         | HAK(57)             | 3 748          | 2.83         | HAK(51)            |
| 6             | 8               | 9.429               | 0.50         | SKI(50)             | 701            | 2.17         | JMA(79)            |
| Cruise 3 Jul- | Sep 1976        |                     |              |                     |                |              |                    |
| 1             | 40              | 150.840             | 1.09         | SWA(22)             | 857            | 1.00         | JMA(43)            |
| 2W            | 36              | 140.743             | 1.10         | SWA(22)             | 157            | 1.14         | _                  |
| 4E<br>4W      | 11<br>4         | 22.181<br>22.992    | 0.56<br>1.49 | HOK(20)<br>LIN(49)  | 28<br>27       | 0.70<br>1.80 | <br>LIN(42)        |
| 5             | 127             | 2 258.709           | 4.26         | HOK(51)             | 27 936         | 3.95         | HOK(56)            |
| 7             | 7               | 74.212              | 2.16         | BYX(90)             | 78             | 3.90         | _                  |
| Cruise 4 Nov  | 1976-Feb 1977   |                     |              |                     |                |              |                    |
| 1             | 34              | 109.280             | 1.09         | HOK(40)             | 22 785         | 1.85         | SQU(38)            |
| 2W            | 9               | 63.585              | 2.05         | HOK(79)             | 87             | 1.26         | HOK(56)            |
| 3E<br>3W      | 14<br>186       | 42.368<br>1 493.200 | 1.03<br>2.42 | SBW(83)<br>SBW(55)  | 46<br>1 896    | 1.12<br>2.20 | SBW(76)<br>SBW(46) |
| 4E<br>4W      | 28<br>62        | 81.170<br>433.042   | 0.93<br>2.03 | SWA(32)<br>LIN(62)  | 3 962<br>2 234 | 1.18<br>1.56 | BUT(57)<br>LIN(67) |
| 5             | 36              | 169.953             | 1.50         | FRO(34)             | 1 444          | 1.42         | _                  |

#### TABLE 2: Summaries of Shinkai Maru cruises and corresponding Japanese commercial trawl data

\* Catch per hour fished (t/h trawled). † Predominant species in catch (% of total).

<sup>‡</sup> No predominant species.

decided that within each subarea-time period for which estimates of standing stock density were to be made, separate estimates would be made for each 1/2 ° square-depth interval. Three depth intervals were used: 200-400 m, 400-600 m, and 600-800 m. These depth constraints were forced by the facts that Shinkai Maru rarely fished shallower than 200 m or deeper than 800 m and that species tended to concentrate in 200-m depth ranges. Estimates of bottom area by depth interval and fishing area are given in Table 3.

For each area, estimates of stock density were made in time periods for which Shinkai Maru made a minimal number of hauls, preferably at all three depth intervals. Table 4 shows the timing of the estimates, which were made over periods ranging from 1 to 3 months. The length of each period relates

to the amount of time that Shinkai Maru spent in a given area during a given cruise. Separate estimates were made for June-July and August-September 1976 in Area 5 because the species composition and depth distribution of the catch changed significantly between these two periods.

| TABLE 3: | Estimates of bottom | area* (km2) by | depth interval for |
|----------|---------------------|----------------|--------------------|
|          | deep-water          | fishing areas  | -                  |

| Area  | 200-400 m | 400-600 m | 600-800 m | Total   |
|-------|-----------|-----------|-----------|---------|
| 1     | 8 035     | 18 536    | 10 629    | 37 200  |
| 2E    | 15 768    | 26 139    | 13 972    | 55 879  |
| 2W    | 19 076    | 18 722    | 6 981     | 44 779  |
| 3E    | 5 725     | 7 170     | 13 948    | 26 843  |
| 3W    | 19 142    | 151 303   | 83 912    | 254 357 |
| 4E    | 1 974     | 3 781     | 18 241    | 23 996  |
| 4W    | 3 990     | 2 634     | 2 233     | 8 857   |
| 5     | 9 310     | 6 325     | 9 646     | 25 281  |
| Total | 83 020    | 234 610   | 159 562   | 477 192 |

\* Bottom areas are approximate because of inadequate bathymetric data.

|      |       |   |   | Area |   |   |
|------|-------|---|---|------|---|---|
| Year | Month | 1 | 2 | 3    | 4 | 5 |
| 1975 | Nov   |   | х |      | х |   |
|      | Dec   |   |   |      | х |   |
| 1976 | Jan   |   |   | х    |   |   |
|      | Feb   |   |   |      |   |   |
|      | Mar   |   |   |      |   |   |
|      | Apr   | х |   |      |   |   |
|      | May   | х | х |      | x |   |
|      | Jun   | х |   |      |   | Х |
|      | Jul   |   | х |      |   | X |
|      | Aug   |   | х |      |   | X |
|      | Sep   |   | х |      |   | х |
|      | Oct   |   |   |      |   |   |
|      | Nov   |   |   |      | х |   |
|      | Dec   |   |   | х    | х |   |
| 1977 | Jan   |   |   | х    |   |   |
|      |       |   |   |      |   |   |

TABLE 4: Timing of estimates made from Shinkai Maru data

The analytic technique which was used for the estimation of standing stock is a modification of that discussed by Alverson and Pereyra (1969). The method is founded on the basic assumption (Gulland 1969) that catch per unit of effort (CPUE), in this instance catch per distance trawled, is a function of stock density in the stratum being surveyed and that changes in CPUE are proportional to changes in stock density. If one is then willing to make certain assumptions about the width of the sweep of a trawl, the efficiency of the gear (escapement), and the vertical distribution of the stock in the water column (availability), it is possible to calculate stock density and subsequently estimate the total standing stock of demersal fish in a defined area.

In most instances in which estimates could be made, the Japanese commercial trawl fleet fished a larger overall area than that fished by *Shinkai Maru*. However, since the commercial records were summaries of catch and hours trawled by  $\frac{1}{2}^{\circ}$  square, month, and vessel size class, they could not be used directly in the estimation of stock density. The detailed individual trawl records from *Shinkai Maru* had to be the basis of all estimates. The commercial fleet data had to be standardised to those of *Shinkai Maru* so that they could be used together. For a given area-time period stratum, the average efficiency (catch per hour fished) relative to *Shinkai Maru* of each commercial size class was computed by the geometric mean method (Shimada and Schaefer 1956). Let

- $C_{ijk} = \text{catch (t) for size class } k \text{ during month } j$ in  $\frac{1}{2} \circ \text{square } i \quad (k = 0 \text{ for Shinkai} Maru)$
- $f_{ijk}$  = hours fished for size class k during month j in  $\frac{1}{2}$ ° square i (k = 0 for Shinkai Maru)

$$U_{ijk} = C_{ijk} / f_{ijk}$$

$$a_k = \text{number of } \frac{1}{2} \circ \text{square-months where}$$
  
 $f_{iik} > 5 \text{ and } f_{ii0} > 1$ 

Then

1

 $\rho_k = \text{relative fishing power of size class } k \text{ to} \\
Shinkai Maru$ 

$$= \exp \left[ \frac{1}{n_k} \sum_{i = j} \sum_{j = 0} \log_e \left( -\frac{U_{ijk}}{U_{ij0}} \right) \right]$$

These values are given in Table 5.

For a given time period-area-depth stratum, the estimation of relative stock density was done by a three-step procedure.

1. Shinkai Maru (SM). Make a direct estimate for all  $\frac{1}{2}$ ° squares where Shinkai Maru fished for more than 1 hour at depth range d

- $Y_{il}$  = catch (t) of trawl *l* at depth range *d* in  $\frac{1}{2}$ ° square *i*
- $s_{il}$  = speed (knots) of trawl *l* at depth range d in  $\frac{1}{2}$ ° square *i*
- $t_{il}$  = time (hours) of trawl *l* at depth range *d* in  $\frac{1}{2}$ ° square *i*

Then for all  $\frac{1}{2}$  ° squares *i* where  $\sum_{l} t_{il} > 1$ 

$$D_{i} = \text{relative stock density (t/km trawled)}$$
$$= \frac{\sum_{l} Y_{il}}{1.852 \sum_{l} s_{il} t_{il}}$$

2. Step 1. Make a comparative estimate for all <sup>1</sup>/<sub>2</sub> ° squares (i) where Shinkai Maru fished for less than 1 hour at depth range d, the Japanese commercial fleet

fished for more than 5 standard hours, and more

TABLE 5: Relative fishing power of Japanese commercial fleet to Shinkai Maru

|      |                                       |          |          | Size class |                                  |                                  |
|------|---------------------------------------|----------|----------|------------|----------------------------------|----------------------------------|
| Area | Time                                  | 4        | 5        | 6          | 7                                | 8                                |
| 1    | Apr-Jun '76                           | 0.829 99 |          | 2.068 98   | 1.206 26                         | 1.241 60                         |
| 2    | Nov '75<br>May, Jul-Sep '76           |          |          |            |                                  | 1.407 09<br>1.023 21             |
| 3    | Jan '76, Dec '76-Jan '77              | 0.682 85 | 0.239 49 |            |                                  | 1.184 72                         |
| 4    | Nov-Dec '75<br>May '76<br>Nov-Dec '76 | 0.652 12 | 0.250 68 | 0.854 01   | 0.614 50<br>0.352 35<br>0.464 64 | 0.691 76<br>0.947 62<br>1.386 56 |
| 5    | Jun-Sep '76                           | 0.641 05 | 0.409 88 | 2.358 52   | 1.574 67                         | 1.553 48                         |

than 20% of the bottom area between 200 and 800 m lies in depth range d. Let

- = catch of size class k in  $\frac{1}{2}^{\circ}$  square i (k  $Y_{ik}$ = 0 for Shinkai Maru)
- = hours fished of size class k in  $\frac{1}{2}^{\circ}$  $f_{ik}$ square i
- = bottom area of  $\frac{1}{2}$ ° square *i* at 200-400  $a_{i1}$ m
- = bottom area of  $\frac{1}{2}$ ° square *i* at 400-600  $a_{i2}$ m
- = bottom area of  $\frac{1}{2}$ ° square *i* at 600-800  $a_{i3}$ m
- = bottom area of  $\frac{1}{2}^{\circ}$  square *i* at depth  $a_{id}$ range d

$$Z_{id} = a_{id}/(a_{i1} + a_{i2} + a_{i3})$$

 $U_i$ = catch per standard hour fished (CPSHF) of Japanese commercial fleet in  $\frac{1}{2}^{\circ}$  square *i* 

$$= \sum_{k} \frac{Y_{ik}}{k} \frac{\sum_{k} f_{ik}}{k}$$

Then for all  $\frac{1}{2}$ ° squares *i* where

a. 
$$f_{i0} < 1$$
  
b.  $\sum_{\substack{k \neq 0 \\ c. \ Z_{id}}} \rho_k f_{ik} > 5$ 

and all  $\frac{1}{2}$ ° squares *j* where SM estimates have been made, let

- $R_{ij} = U_i/U_j$  $X_{ij} = \text{longitudinal distance (°) between } \frac{1}{2}$ ° squares *i* and *i*
- $Y_{ii}$ = latitudinal distance (°) between  $\frac{1}{2}$ ° squares i and j

$$W_{ij} = Z_{jd} / (X_{ij}^2 + Y_{ij}^2)$$

then

$$\hat{D}_{i} = \left( \sum_{j} W_{ij} R_{ij} D_{j} \right) / \sum_{j} W_{ij}$$

Therefore for a given depth range d the Step 1 estimates are weighted means of the existing SM estimates at that depth adjusted for differences in commercial catch rates. The weighting factor between a  $\frac{1}{2}$ ° square *i* where the Step 1 estimate is to be made and a  $\frac{1}{2}$ ° square j where a SM estimate has already been made is directly proportional to the fraction of  $\frac{1}{2}$ ° square *j* at depth *d* and inversely proportional to the distance between  $\frac{1}{2}$ ° squares *i* and *j*. This system of weighting was chosen on an empirical basis as was the form of the Step 1 estimator. It was felt that  $W_{ii}$  should take into account the distance between 1/2 ° squares and the likelihood that the commercial CPSHF in  $\frac{1}{2}$ ° square *j* was recorded at depth range d.

3. Step 2. For all  $\frac{1}{2}$  ° squares (i) which have bottom area at depth d, but which do not satisfy the criteria for either Shinkai Maru or Step 1 estimates, compute a weighted average of all previous estimates where the weighting factor is identical to that for Step 1 estimates. Therefore, letting j range over all  $\frac{1}{2}^{\circ}$ squares where Shinkai Maru and Step 1 estimates have been made at depth d,

$$\hat{D}_{i} = \sum_{j} W_{ij} D_{j} / \sum_{j} W_{ij}$$

It was originally hoped that the fact that a  $\frac{1}{2}$ ° square had no Shinkai Maru or commercial effort in it during a given period might indicate that stock densities were low in that area, and that this information might be used in the Step 2 estimation procedure. However, tests indicated no significant relationship between catch rates and the total amount of effort expended in a  $\frac{1}{2}$ ° square-time period. That is why the Step 2 estimates are simple weighted averages of the SM and Step 1 estimates.

The 1/2° square-depth estimates of relative stock density are then combined to give an estimate of relative stock density for the time-area stratum at depth d as

$$\hat{D}_d = \sum_i a_{id} D_i / \sum_i a_{id}$$

These estimates are further combined to give an average stock density for the time-area stratum as a whole. Estimates are given for total standing stock as well as certain selected species in Table 6. For a given area missing time-depth strata densities are estimated by use of the analysis of variance model

$$Y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$$

where

μ

- i = depth stratum
- $Y_{ij}$ = natural logarithm of relative stock density at time *i*, depth *j* 
  - = natural logarithm of mean density for the area as a whole
- $\alpha_i$
- = deviation of  $Y_{ij}$  from  $\mu$  due to time *i* = deviation of  $Y_{ij}$  from  $\mu$  due to depth *j*  $\beta_i$
- = random variable distributed  $N(0, \sigma^2)$  $\epsilon_{ii}$

The parameters  $\mu$ ,  $\{\alpha_i\}$ ,  $\{\beta_j\}$  are then estimated by the method of least squares. The form of the linear model resembles that of Robson (1966). The basic  $\frac{1}{2}^{\circ}$  square parameters and variables used in the estimates are presented in Appendix 2.

It is clear that Shinkai Maru did not fish at random or according to a predetermined grid pattern. Within

|      |                 |                            |                                  |                                  |                                  | Total                            |
|------|-----------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Area | Date            | Species                    | 200–400 m                        | 400–600 m                        | 600-800 m                        | (200-800 m)                      |
| 1    | Apr-Jun '76     | Total<br>HOK               | 0.108<br>0.009                   | 0.225<br>0.103                   | 0.231<br>0.054                   | 0.201<br>0.068                   |
| 2E   | Nov '75         | Total<br>HOK               | 0.091<br>0.054                   | 0.081<br>0.046                   | 0.169<br>0.109                   | 0.106<br>0.064                   |
|      | May '76         | Total<br>HOK               | 0.110*<br>0.053*                 | 0.099<br>0.045                   | 0.205*<br>0.107*                 | 0.129<br>0.063                   |
| 2W   | Nov '75         | Total<br>HOK               | 0.100<br>0.067                   | 0.146<br>0.104                   | 0.243<br>0.170                   | 0.142 0.099                      |
|      | May '76         | Total<br>HOK               | 0.123* 0.065*                    | 0.274<br>0.142                   | 0,195<br>0,117                   | 0.210<br>0.105                   |
|      | Jul-Sep '76     | HOK                        | 0.065*                           | 0.021                            | 0.126                            | 0.097                            |
| 3E   | Dec '76-Jan '77 | Total<br>SBW<br>HOK        | 0.027<br>0.001<br>0.000          | 0.137<br>0.114<br>0.017          | 0.082<br>0.063<br>0.000          | 0.085<br>0.063<br>0.005          |
| 3W   | Jan '76         | Total<br>SBW<br>HOK        | 0.037<br>0.000<br>0.007          | 0.237<br>0.164<br>0.039          | 0.163<br>0.024<br>0.097          | 0.198<br>0.105<br>0.056          |
|      | Dec '76-Jan '77 | Total<br>SBW<br>HOK        | 0.469<br>0.134<br>0.264          | 0.275<br>0.173<br>0.059          | 0.118<br>0.012<br>0.086          | 0.238<br>0.117<br>0.083          |
| 4E   | Nov-Dec '75     | Total<br>SWA               | 0.710<br>0.600                   | 0.698<br>0.619                   | 0.722*<br>0.023*                 | 0.717<br>0.164                   |
|      | May '76         | Total<br>SWA               | 0.404<br>0.384                   | 0.352<br>0.276                   | 0.387* 0.012*                    | 0.383<br>0.084                   |
|      | Nov-Dec 7/6     | SWA                        | 0.136                            | 0.005                            | 0.000                            | 0.012                            |
| 4W   | Nov-Dec '75     | LIN<br>Total               | 0.159<br>0.012<br>0.148          | 0.022                            | 0.082*                           | 0.033                            |
|      | NOV-Dec 70      | LIN                        | 0.007                            | 0.187                            | 0.183                            | 0.105                            |
| 5    | Jun-Jul '76     | Total<br>HOK<br>HAK<br>BAR | 0.271<br>0.000<br>0.000<br>0.007 | 0.676<br>0.558<br>0.070<br>0.000 | 0.301<br>0.139<br>0.122<br>0.000 | 0.384<br>0.193<br>0.063<br>0.003 |
|      | Aug-Sep '76     | Total<br>HOK<br>HAK<br>BAR | 0.718<br>0.001<br>0.000<br>0.463 | 0.454<br>0.343<br>0.018<br>0.018 | 0.163<br>0.007<br>0.140<br>0.000 | 0.440<br>0.089<br>0.058<br>0.175 |

#### TABLE 6: Estimates of relative stock density (t/km trawled)

\* Estimated by analysis of variance.

a given area she tended to fish, if possible, where fishing was the best. Therefore one might expect that the density where she did fish was considerably higher than the average density in that area as a whole and that this might be reflected by an upward bias in the estimates of biomass density. Our hope was that the stratification was sufficient to eliminate any bias of this sort from the estimates. To test for this bias, a comparison was made of statistics and density estimates generated by *Shinkai Maru* with similar statistics and estimates produced from a systematic grid survey by the Japanese fisheries research vessel *Kaiyo Maru* in late 1977 and early 1978.

Kaiyo Maru (Anon. 1978b) worked three New Zealand deep-water fishing areas: Chatham Rise-Mernoo Bank (Areas 1 and 2), Pukaki Rise (Area 3W), and Campbell Island Rise (Area 3W) from 11

December 1977 to 12 February 1978. In that period the vessel fished for 45 days, made 116 trawls, and caught a total of 92 t. Her characteristics were as follows: length 91.87 m; breadth 15.00 m moulded; tonnage 2539.48 GRT; net, a fourseam research bottom trawl with headline length 52.70 m; average headline height 5.00 m; average distance between wing-ends 19.00 m; interchangeable cod-ends of 104.3-mm, 76.1-mm, and 60.2-mm mesh, with a 30-mm mesh cod-end cover.

The location of stations latticed over the grid surveyed by *Kaiyo Maru* is given in Fig. 8. Two methods of comparison of the *Shinkai Maru* survey with the *Kaiyo Maru* survey were used. In the first the ratio between research vessel and Japanese commercial trawler catch rates (catch per hour trawled) was computed for selected times and areas for the two surveys. The commercial fleet was divided into two size classes of vessels because of differences in



Fig. 8: Kaiyo Maru cruise track and station locations, December 1977 to February 1978.

relative fishing power: size class 5- (smaller than 2000 GRT) and size class 6+ (larger than 2000 GRT). Unfortunately no Japanese commercial trawl statistics are at present available for the first quarter of 1978 in Area 3 and so that area could not be used

in this first analysis. The Kaiyo Maru survey statistics of December 1977 are compared with Japanese commercial statistics from the fourth quarter (October, November, December) of 1977 and the Shinkai Maru survey statistics of November and December 1975 are

#### TABLE 7: Catch rates of research vessels and Japanese commercial vessels

|                                                                 | Size       |                                                   |                      | Catch rate (t/h)     |                      |
|-----------------------------------------------------------------|------------|---------------------------------------------------|----------------------|----------------------|----------------------|
| Source                                                          | class      | Time                                              | Area 1               | Area 2               | Area 1 + 2           |
| <i>Kaiyo Maru</i><br>Japanese commercial<br>Japanese commercial | 5-<br>6+   | Dec '77<br>4th quarter '77<br>4th quarter '77     | 1.12<br>1.73<br>1.37 | 1.05<br>1.12<br>2.80 | 1.08<br>1.30<br>2.76 |
| Shinkai Maru<br>Japanese commercial<br>Japanese commercial      | 5 -<br>6 + | Nov-Dec '75<br>4th quarter '75<br>4th quarter '75 | 1.18<br>0.84<br>1.83 | 1.42<br>0.88<br>1.77 | 1.29<br>0.84<br>1.82 |

compared with the Japanese commercial statistics from the fourth quarter of 1975 (Table 7).

Table 8 gives the ratios of the research vessel catch rates to the commercial catch rates. The Kaiyo Maru catch rates were first multiplied by 39/19 (= 2.05), the ratio of the width of sweep of the Shinkai Maru net to that of the Kaiyo Maru net, to make the ratios comparable. Further corrections in fishing power could be made to account for the change in commercial cod-end mesh size between 1975 and 1977 and the differences in average headline height between the two research vessels. However, these two factors, when estimated, appear to cancel each other out.

## TABLE 8: Ratios of research vessel catch rates to commercial catch rates

| Source                | Area 1 | Area 2 | Area 1 + 2 |
|-----------------------|--------|--------|------------|
| 2.05 x Kaiyo Maru/5 – | 1.33   | 1.92   | 1.71       |
| 2.05 x Kaiyo Maru/6+  | 1.68   | 0.77   | 0.80       |
| Shinkai Maru/5 –      | 1.40   | 1.61   | 1.54       |
| Shinkai Maru/6+       | 0.64   | 0.80   | 0.71       |

Table 8 shows that, once the discrepancy in fishing power between Kaiyo Maru and Shinkai Maru is accounted for, there is no indication that differences in survey designs gave Shinkai Maru a significantly higher fishing power than Kaiyo Maru in relation to the commercial fleet.

The second method of comparison between the two surveys was to estimate average stock density for comparable time-area-depth strata. *Kaiyo Maru* estimates were made for Areas 1 and 2 for 200-600-m

depth range during December 1977 and for Area 3W for 200-800-m depth range during January and February 1978. (The estimates for Area 3W were made with no concomitant commercial statistics.) These are compared with *Shinkai Maru* estimates for Area 2 for 200-600-m depth range during November 1975 and for Area 3W for 200-800-m depth range during January 1976 and December 1976-January 1977. The estimates are given in Table 9.

#### TABLE 9: Average stock density (t/km trawled)

| Source                       | Area 1 | Area 2 | Area 3W |
|------------------------------|--------|--------|---------|
| Kaiyo Maru Dec '77-Feb '78   | 0,073  | 0.109  | 0,084   |
| 2.05 x Kaiyo Maru            | 0.150  | 0.224  | 0.172   |
| 2.05 x 1.40 x Kaiyo Maru     | 0.209  | 0.313  | 0.241   |
| Shinkai Maru Nov '75         | _ *    | 0.103  | -       |
| Shinkai Maru Jan '76         | -      | -      | 0.198   |
| Shinkai Maru Dec '76-Jan '77 | -      | -      | 0.238   |

\* No estimates made during time period.

Three sets of Kaiyo Maru estimates are given: the raw estimates of average stock density, the estimates corrected for differences in width of sweep between the Shinkai Maru and Kaiyo Maru nets (2.05 x Kaiyo Maru), and the estimates corrected for differences in width of sweep (2.05) and average headline height (7/5 (= 1.40)) between Shinkai Maru and Kaiyo Maru. Again, once the Kaiyo Maru estimates are corrected for discrepancies in fishing power relative to Shinkai Maru, there is no indication that the Shinkai Maru survey, because of its design, tended to produce upwards biased estimates of biomass density.



## **Fishery Potential**

The fishery potential of the deep-water area surveyed by Shinkai Maru was estimated according to the methods described by Alverson and Pereyra (1969). Estimates of unexploited standing stock were made from the estimates of relative standing stock density. Then potential stock production could be estimated. In this publication estimates of fishery potential were made for the total biomass and the two predominant species in the fishery, hoki and southern blue whiting. Table 10 gives the estimates of relative stock density (tonnes/kilometre trawled) selected to be used as the basis for the estimates of fishery potential. Time periods of highest recorded density were used for Areas 3, 4W, and 5. Note that in Area 5 the estimate for the 200-400-m depth stratum was chosen from the August-September 1976 period, a time when barracouta was densely concentrated at this depth, and the estimate for the two deeper strata was chosen from the June-July 1976 period, when hoki and English hake were densely concentrated in the deeper waters of this area.

The entire deep-water fishing ground of Areas 1, 2, and 4E lies under the Subtropical Convergence (see Fig. 2). There is evidence (Paul 1979) to indicate that certain stocks, in particular silver warehou, migrate along the Subtropical Convergence between these three areas. It was therefore decided that the estimates of relative stock density to be used as a basis for estimates of fishery potential for these three areas should all be made for the same general time period. The period around May 1976 was chosen for this reason.

For a given fishing area *i*, let

- $A_i$  = total bottom area between 200 and 800 m (km<sup>2</sup>)
- $D_i$  = estimate of relative stock density (t/km trawled)
- a = width of the area swept by the Shinkai Maru net (km)
- 1 E = fraction of the stock available to the Shinkai Maru net

Then

 $B_i$  = standing stock biomass of area i=  $D_i A_i / a(1 - E)$ 

The difficulty in the extrapolation is in the determination of a and E for different species and areas. Here, values of a range from 0.039 km (estimated distance between the wings of the Shinkai Maru net, T. Inada pers. comm.) to 0.033 km (head rope length divided by 1.5, a value commonly used by the Japanese in their trawl assessments) (Liu 1976). The value of E was subject to much speculation. Although escape of small fish through the Shinkai Maru 100-mm double cod-end was virtually nil (Fisheries Agency of Japan pers. comm.), the fact that the net reached to an average headline height of only 7 m certainly limited its ability to sample fully the demersal community. Values of E were used which ranged from E = 0.0 (100% availability) to E = 0.5 (50% availability, a value commonly used by the Japanese) (Liu 1976). This value compares favourably with the average availability (1 - E) =0.57) to Soviet and American research trawls reported by Edwards (1968) in his attempt to estimate the total fish resource of the continental shelf off New England in the north-west Atlantic Ocean. (This estimate is only for fish that go right to the bottom and are available to bottom trawl gear in substantial numbers in certain seasons or at certain times of the day.)

Several methods are at present being used to estimate potential fishery production of latent (unexploited) resources. The method used here, attributed to J. A. Gulland, is described by Alverson and Pereyra (1969) and Francis (1974) and is based on the following assumptions:

1. At or near the level of MSY, F (instantaneous fishing mortality) is approximately equal to M (instantaneous natural mortality).

2. According to the logistic stock production model of Schaefer (1954), MSY is reached when the exploitable population reaches about half of its unexploited biomass  $(B_0)$ .

With these two assumptions, MSY can be calculated as

 $MSY = 0.5MB_0$ 

Tables 11 and 12 give estimates of standing stock biomass and MSY in their extreme values (a = 0.039)

20

km, E = 0.0 and a = 0.033 km, E = 0.5) and under the assumptions that:

2. M = 0.4 for southern blue whiting (SBW),

3. M = 0.3 for hoki (HOK),

4. M = 0.3 for all other demersal species combined (OTH).

1. All stocks were virtually unexploited when sampled by Shinkai Maru,

| <b>TABLE 10: Estimates of relative standing s</b> | tock density used to estimate potential | stock production (t/km trawled) |
|---------------------------------------------------|-----------------------------------------|---------------------------------|
|---------------------------------------------------|-----------------------------------------|---------------------------------|

| Area | Date            | Species             | 200-400 m               | 400-600 m               | 600-800 m               | (200-800  m)            |
|------|-----------------|---------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 1    | Apr-Jun '76     | Total<br>HOK        | 0.108<br>0.009          | 0.225<br>0.103          | 0.231<br>0.054          | 0.201<br>0.068          |
| 2    | May '76         | Total<br>HOK        | 0.117<br>0.060          | 0.172<br>0:085          | 0.202<br>0.110          | 0.159<br>0.082          |
| 3    | Dec '76-Jan '77 | Total<br>HOK<br>SBW | 0.367<br>0.203<br>0.103 | 0.268<br>0.057<br>0.170 | 0.113<br>0.074<br>0.019 | 0.223<br>0.076<br>0.112 |
| 4E   | May '76         | Total               | 0.404                   | 0.352                   | 0.387                   | 0.383                   |
| 4W   | Nov-Dec '76     | Total               | 0.148                   | 0.244                   | 0.248                   | 0.202                   |
| 5    | Jun-Sep '76     | Total<br>HOK        | 0.718<br>0.001          | 0.676<br>0.558          | 0.301<br>0.139          | 0.548<br>0.193          |
|      |                 |                     |                         |                         |                         |                         |

|      |       | TABLE | 11: Biomass e | stimates (10 <sup>3</sup> ) | ), where $a =$ | 0.039 km and | E = 0.0 |             |      |
|------|-------|-------|---------------|-----------------------------|----------------|--------------|---------|-------------|------|
|      |       | SI    | BW            | Н                           | ОК             | 0            | ГH      | Тс          | otal |
| Агеа |       | $B_0$ | MSY           | $B_{0}$                     | MSY            | $B_0$        | MSY     | $B_{\circ}$ | MSY  |
| 1    |       |       |               | 65                          | 10             | 127          | 19      | 192         | 29   |
| 2    |       |       |               | 212                         | 32             | 198          | 30      | 410         | 62   |
| 3    |       | 808   | 162           | 548                         | 82             | 252          | 38      | 1 608       | 282  |
| 4E   |       |       |               |                             |                | 236          | 35      | 236         | 35   |
| 4W   |       |       |               |                             |                | 46           | 7       | 46          | 7    |
| 5    |       |       |               | 125                         | 19             | 230          | 35      | 355         | 54   |
|      | Total | 808   | 162           | 950                         | 143            | 1 089        | 164     | 2 847       | 469  |

|      |       | TABLE | 12: Biomass of | estimates (10 <sup>3</sup> t) | ), where $a =$ | 0.033 km and | E = 0.5 |       |       |  |
|------|-------|-------|----------------|-------------------------------|----------------|--------------|---------|-------|-------|--|
|      |       | SE    | BW             | HO                            | ЭК             | O            | ГН      | Total |       |  |
| Area |       | $B_0$ | MSY            | $B_0$                         | MSY            | $B_0$        | MSY     | $B_0$ | MSY   |  |
| 1    |       |       |                | 154                           | 24             | 300          | 45      | 454   | 69    |  |
| 2    |       |       |                | 501                           | 76             | 468          | 71      | 969   | 147   |  |
| 3    |       | 1 910 | 383            | 1 295                         | 194            | 596          | 90      | 3 801 | 667   |  |
| 4E   |       |       |                |                               |                | 558          | 83      | 558   | 83    |  |
| 4W   |       |       |                |                               |                | 109          | 17      | 109   | 17    |  |
| 5    |       |       |                | 295                           | 45             | 544          | 83      | 839   | 128   |  |
|      | Total | 1 910 | 383            | 2 245                         | 339            | 2 575        | 389     | 6 730 | 1 111 |  |



## Discussion

The question now becomes: How does one evaluate these broadly ranging estimates of potential deep-water demersal production? Regier (1978) suggests that "theory relevant to fisheries systems as such can be intuited, perhaps most readily by comparing and contrasting relatively gross events and large scale processes in a number of resource systems that appear to bear some resemblance to each other." We therefore decided that a more accurate overview of New Zealand deep-water demersal fishery production could be obtained if various physical and biological parameters from this system were compared with those of other major temperate demersal fisheries around the world.

First we looked at the relationship between potential demersal production (million tonnes/year) — for all practical purposes MSY — and bottom shelf area (million square kilometres) for the major temperate demersal fishing areas around the world (Fig. 9) (Gulland 1970a) and compared these with our two extreme estimates for the New Zealand area surveyed by *Shinkai Maru* (Table 13, Fig. 10). It is apparent that unless there is something abnormal about the New Zealand deep-water demersal fishing area, our first estimate (0.469 million t) is rather low when compared with those from other major temperate demersal fishing areas. However, the traditional argument (Waugh 1977) has been that since all life in the sea ultimately depends on photosynthesis, and since primary production (the production of plant material) tends to be low in New Zealand waters (due to New Zealand's relatively small land mass and the basic west to east oceanic circulation in the South Pacific), one cannot expect the sea around New Zealand to abound in the basic foods for fishes.

With this in mind we decided to investigate what was known about the relationship between primary production and demersal fishery production, as well as what information was available on the level of

| TABLE 13: PDP <sup>1</sup> | ' and BA† | for major | temperate | demersal | fishing |
|----------------------------|-----------|-----------|-----------|----------|---------|
|                            | areas and | New Zeal  | and area  |          |         |

| Area                        | BA        | PDP      |           |
|-----------------------------|-----------|----------|-----------|
| Alta                        | (10 KIII) | (10 (7)) | I DI / DA |
| NW Atlantic (a)             | 1.260     | 3.550    | 2.82      |
| NE Atlantic (b)             | 3.155     | 6.650    | 2.11      |
| NW Pacific (c)              | 0.959     | 1.411    | 1.47      |
| NE Pacific (d)              | 1.090     | 1.460    | 1.34      |
| SW Atlantic (e)             | 1.940     | 3.825    | 1.97      |
| SE Atlantic (f)             | 0.520     | 1.080    | 2.08      |
| New Zealand                 |           |          |           |
| a = 0.039 km, $E = 0.0$ (g) | 0.477     | 0.469    | 0.98      |
| a = 0.033 km, $E = 0.5$ (h) | 0.477     | 1.111    | 2.33      |

\* Potential demersal production.

† Bottom area.



Fig. 9: Major temperate demersal fishing areas of the world (after Gulland 1970a).

|                                           | BA                                 | PP        | PDP                    | DPD       |
|-------------------------------------------|------------------------------------|-----------|------------------------|-----------|
| Area                                      | (10 <sup>6</sup> km <sup>2</sup> ) | (gC/m²yr) | (10 <sup>6</sup> t/yr) | (t/km²yr) |
| NE Pacific-Transition, Gulf of Alaska (a) | 0.368                              | 150       | 0.700                  | 1.90      |
| NE Atlantic, North Sea (b)                | 0.600                              | 100       | 1.000                  | 1.67      |
| NE Atlantic, Barents Sea (c)              | 1.300                              | 100       | 3,500                  | 2.69      |
| SW Atlantic, Argentina, Uruguay (d)       | 1.180                              | 125       | 3.000                  | 2.54      |
| SE Atlantic, Angola, S Africa (e)         | 0.310                              | 50        | 0.585                  | 1.89      |
| SE Atlantic, SW Africa (f)                | 0.200                              | 200       | 0.720                  | 3.60      |
|                                           |                                    |           |                        |           |

#### TABLE 14: DPD\* and PP<sup>†</sup> for some major temperate demersal fishing areas

\* Demersal production density.

† Total annual primary production.

primary production in New Zealand waters. From Gulland (1970a) one can obtain the relationship between potential demersal production density and total annual primary production for some of the major temperate demersal fishing areas around the world (Table 14, Fig. 11).

Bradford and Roberts (1978) provide the most recent estimates of the areal distribution of integrated primary production for the New Zealand region. Estimates of total annual primary production in the New Zealand deep-water fishing area (J. M. Bradford, N.Z. Oceanographic Institute, pers. comm.) lie in the range of 90 gC/m<sup>2</sup>yr (subtropical water) to 130 gC/m<sup>2</sup>yr (subantarctic water). Therefore it appears that primary production in the New Zealand deepwater fishing area is average when compared with other temperate demersal fishing areas at a similar latitude. Accordingly, by use of a linear regression of

production density on total annual primary production for Table 14, one gets a range of point estimates of potential production for the New Zealand deep-water fishing area of 0.992 million to 1.178 million t (corresponding to an estimated range of production density of 2.08 to 2.47 t/km<sup>2</sup> and a fishable bottom area of 477 192 km<sup>2</sup>), with a 95% confidence interval of potential demersal production which ranges from 0.615 million to 1.506 million t annually. If the above regression (y = 1.2097 +0.0097x, where y = DPD and x = PP) is used separately for subantarctic and subtropical fishing areas, one obtains a point estimate of potential demersal production for the subantarctic waters of the Campbell Plateau-Bounty Platform (Area 3) of 0.695 million t (PP =  $130 \text{ gC/m}^2\text{yr}$ ) and for the subtropical waters of Areas 1, 2, 4, and 5 of 0.408 million t (PP = 90 gC/m<sup>2</sup>yr). These values compare favourably with our direct estimates if a = 0.033 km and E = 0.5 are assumed.



Fig. 10: Potential demersal production (PDP) plotted against bottom shelf area (see Table 13).



Fig. 11: Potential demersal production density (DPD) plotted against total annual primary production (see Table 14).

Finally, by use of food chain dynamics estimates similar to those of Steele (1965) and Gulland (1970b) and the assumption of a 10% efficiency of transfer between trophic levels and the same primary production values as above, one obtains potential demersal production estimates for the subantarctic waters of Area 3 of 0.627 million t and for the subtropical waters of Areas 1, 2, 4, and 5 of 0.309 million t. Once again, these resemble our direct estimates if a = 0.033 km and E = 0.5 are assumed. All estimates of potential demersal production are summarised in Table 15.

These comparative estimates, though useful for assessing the order of magnitude of the deep-water production potential, are conglomerates of many effects and should be treated with care. Gulland

(1970b), Schaefer (1965), and Ryther (1969) have pointed out that not only primary production, but the associated food chain dynamics, act additively to produce differences in fish production. The deepwater demersal fishery of the New Zealand EEZ exploits a much deeper bottom area (400-500 m being potentially the most productive) than most of the other major demersal fisheries with which the above comparisons have been made. Regier and Henderson (1973) report on work by Ryder (1970), Jenkins (1970), and others who have shown that fish catches from lakes and reservoirs of a geographical region, fished at roughly equal intensities, are inversely related to mean depth. The implication is that the shallower a lake is, the less constant is the environment that it provides and the higher is the average environmental temperature, two factors which are

מתח

#### TABLE 15: Summary of estimates of PDP (10<sup>6</sup> t/yr)

|                                 |                             |              | FDF         |       |
|---------------------------------|-----------------------------|--------------|-------------|-------|
| Source                          | Assumptions                 | Subantarctic | Subtropical | Total |
| Direct (Shinkai Maru)           | a = 0.039 km, $E = 0.0$     | 0.282        | 0.187       | 0.469 |
| ,                               | a = 0.033 km, $E = 0.5$     | 0.667        | 0.444       | 1.111 |
| Regression (primary production) |                             | 0.695        | 0.408       | 1.103 |
| Food chain (Steele 1965)        | Trophic efficiency $= 0.10$ | 0.627        | 0.309       | 0.936 |

hypothesised to be directly proportional to fish production. J. A. Gulland (pers. comm.) feels that this depth factor would put the deeper New Zealand waters somewhat below the general trend line of production density on total annual primary production discussed above. On the other hand, K. Radway Allen (pers. comm.) feels that one cannot carry over Regier and Henderson's (1973) inference from closed freshwater lakes and reservoirs to open marine systems.

One interesting point to note is that stomach content analyses indicate that the most abundant species in the New Zealand deep-water demersal fishery, southern blue whiting and hoki, feed primarily in the mid-water layers on planktonic crustaceans and small mesopelagic fish. The same is true of the gadoids (cods, hakes, and pollocks) that predominate in the other major temperate demersal fisheries around the world. The implication is that the difference in average bottom depth between the New Zealand deep-water demersal fisheries with which comparisons have been made is of minor importance.

Alverson and Pereyra (1969) aptly put these types of first approximation estimates into perspective in saying: "More sophisticated scientific investigation obviously will permit refinement of these preliminary forecasts and estimates. Nevertheless the estimates can serve as a basis for a rational approach to management problems. In fact, at times one wonders whether management decisions at an early stage of fisheries development based on the analysis of exploratory survey data might not lead to a more stable and economically viable fishery than a fishery that follows the normal course of boom and bust, followed by a parade of scientific post mortems." Our general feeling is that until these estimates become more refined and certain, for the immediate management of the resource we must act as if our most **conservative** estimates of resource potential are correct.

Our basic conclusion is that our second estimate of 1.111 million t per year is the most realistic estimate of potential demersal production in the area surveyed by Shinkai Maru. The two sets of comparative estimates (regression and food chain) certainly tend to bear this out. In addition, they indicate that the direct estimates predict a relative distribution of demersal fish production between the subantarctic waters of Area 3 and the subtropical waters of Areas 1, 2, 4, and 5 which seems reasonable when compared with other fishing areas about which more is known. However, this does not imply that the New Zealand fishery will be able to support a sustained annual yield of over 1 million t. To quote Larkin (1977), "... it should be stressed that it [MSY] provides a valuable rough index of production potential. As a first rough cut at management policy for major commercial species, MSY is probably acceptable. But once the level of MSY is attained, it should be expected that it may not be sustained." Therefore we feel more confident in predicting that the New Zealand deep-water demersal fishery will most likely be able to support a sustained annual yield of between 500 000 and 1 million t. Finally, one should keep in mind that these estimates were made for the deep-water trawl grounds surveyed by Shinkai Maru, around and to the south and east of the South Island. Because of a lack of basic information no estimates were made of deep-water trawl potential around the North Island or deep-water long-line potential.



#### **Acknowledgments**

This is dedicated to the memory of Dr David Eggleston, former deputy director of Fisheries Research Division, a colleague whose ideas and guidance motivated much of what is contained in this publication. We thank all of our colleagues at Fisheries Research Division for their helpful comments and suggestions throughout this project. In addition, we thank the Japan Marine Fishery Resource Research Center, Far Seas Fisheries Research Laboratory, and Fisheries Agency of Japan for making the detailed *Shinkai Maru*, *Kaiyo Maru*, and Japanese commercial trawl data available to us. Finally we thank J. A. Gulland, D. J. Garrod, and D. L. Alverson for their thoughtful and provocative reviews of this paper.

#### References

- ALVERSON, D. L., and PEREYRA, W. T. 1969: Demersal fish explorations in the northeastern Pacific Ocean — an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. Journal of the Fisheries Research Board of Canada 26: 1985-2001.
- ANON. 1978a: On the biomass estimates and the potential yield of bottom fish in New Zealand waters. (Unpublished manuscript from Fishery Agency of Japan, held in Fisheries Research Division library.)
- ANON. 1978b: Report of the voyage and investigations of the Kaiyo Maru 1977, 1978 in New Zealand waters. Japan Fisheries Agency, Tokyo. 259 pp. (In Japanese.)
- BEEBY, C. D. 1975: The United Nations Conference on the law of the sea: A New Zealand view. Pacific Viewpoint 16: 113-42.
- BLAGODYOROV. A. I., and NOSOV, E. V. 1978: The biological basis of rational exploitation of *Macruronus* novaezelandiae. (Unpublished TINRO manuscript. English translation held in Fisheries Research Division library.)
- BRADFORD, J. M., and ROBERTS, P. E. 1978: Distribution of reactive phosphorus and plankton in relation to upwelling and surface circulation around New Zealand. N.Z. Journal of Marine and Freshwater Research 12: 1-15.
- DUDAREV, V. A. 1978: A brief summary on biology and fisheries of the deepwater dory *Neocittus rhomboidalis* of the New Zealand plateau. (Unpublished TINRO manuscript. English translation held in Fisheries Research Division library.)
- EDWARDS, R. L. 1968: Fishery resources of the North Atlantic area. In Gilbert, D. W. (Ed.), The future of the fishing industry of the United States, pp. 52-60. University of Washington Publications in Fisheries, New Series, Vol. 4.
- FRANCIS, R. C. 1974: Relationship of fishing mortality to natural mortality at the level of maximum sustainable yield under the logistic stock production model. *Journal of* the Fisheries Research Board of Canada 31: 1539-42.
- GULLAND, J. A. 1969: Manual of methods for fish stock assessment. Part I. Fish population analysis. FAO Manuals in Fisheries Science, No. 4. 154 pp. (Comp. and Ed.) 1970a: The fish resources of the
- (Comp. and Ed.) 1970a: The fish resources of the oceans. FAO Fisheries Technical Paper No. 97. 425 pp.
   1970b: Food chain studies and some problems in world fisheries. In Steele, J. H. (Ed.), "Marine Food Chains", pp. 296-315. Oliver and Boyd, Edinburgh.
- JENKINS, R. M. 1970: Reservoir fish management. In Benson, N.G. (Ed.), A century of fisheries in North America, pp. 173-82. Special Publication, American Fisheries Society, No. 7.
- JONES, B. W., and POPE, J. G. 1973: A groundfish survey of Farce Bank. Research Bulletin, International Commission for the Northwest Atlantic Fisheries, No. 10: 53-61.
- LARKIN, P. A. 1977: An epitaph for the concept of maximum

sustained yield. Transactions of the American Fisheries Society 106: 1-11.

- LIU, H.-C. 1976: The demersal fish stocks of the waters of north and northwest Australia. Acta Oceanographica Taiwanica. Science Reports of the National Taiwan University, No. 6: 128-34.
- Nosov, E. V. 1978: Some biological aspects of the New Zealand Trachurus declivis (Jenyns, 1842) and its fishery perspectives. (Unpublished TINRO manuscript. English translation held in Fisheries Research Division library.)
- PAUL, L. J. 1979: Deep-water fish resources off the south-east coast of New Zealand. In Elder, R. D., and Taylor, J. L. (Comps.), Prospects and problems for New Zealand's demersal fisheries: Proceedings of the demersal fisheries conference, October 1978, pp. 52-6. Fisheries Research Division Occasional Publication, N.Z. Ministry of Agriculture and Fisheries, No. 19.
- REGIER, H. A. 1978: A balanced science of renewable resources with particular reference to fisheries. University of Washington Sea Grant Publication WSG 78-1. 108 pp.
- REGIER, H. A., and HENDERSON, H. F. 1973: Towards a broad ecological model of fish communities and fisheries. Transactions of the American Fisheries Society 102: 56-72.
- ROBSON, D. S. 1966: Estimation of the relative fishing power of individual ships. Research Bulletin, International Commission for the Northwest Atlantic Fisheries, No. 3: 5-14.
- RYDER, R. A. 1970: Major advances in fisheries management in North American glacial lakes. In Benson, N. G. (Ed.), A century of fisheries in North America, pp. 115-27. Special Publication, American Fisheries Society, No. 7.
- RYTHER, J. H. 1969: Photosynthesis and fish production in the sea. Science, New York 166 (3901): 72-6.
- SCHAEFER, M. B. 1954: Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Bulletin, Inter-American Tropical Tuna Commission 1: 27-56.

\_\_\_\_\_ 1965: The potential harvest of the sea. Transactions of the American Fisheries Society 94: 123-8.

- SHIMADA, B. M., and SCHAEFER, M. B. 1956: A study of changes in fishing effort, abundance, and yield for yellowfin and skipjack tuna in the eastern tropical Pacific Ocean. Bulletin, Inter-American Tropical Tuna Commission 1: 351-469.
- SHPACK, V. M. 1978: The results of biological investigations of the southern putassu *Micromesistius australis* (Norman, 1937) on the New Zealand plateau and perspectives of its fishery. (Unpublished TINRO manuscript. English translation held in Fisheries Research Division library.)
- STEELE, J. H. 1965: Some problems in the study of marine resources. Special Publication, International Commission for the Northwest Atlantic Fisheries, No. 6: 463-76.
- WAUGH, G. D. 1977: Resource potential of the 200 mile economic zone. Fishing Industry Board Bulletin 42: 8.

### Appendix 1

Major deep-water fish species of the New Zealand 200-mile Exclusive Economic Zone. (Alphabetic species codes as used in this publication.)



#### BAR

BARRACOUTA Thyrsites atun. Family Gempylidae (snake mackerels).

New Zealand and southern coasts of Australia, South Africa, and South America. Dark blue back; silvery sides and belly; skin smooth. Distinguished from the gemfish by a single lateral line. Average size 60-90 cm. Common, locally abundant, in coastal waters in 100-200 m. Trawled throughout its range, but main grounds around the South Island.



#### BYX

ALFONSINO Beryx splendens. Family Berycidae (golden snappers).

Widespread in many oceans. Brilliant scarlet above; sides red with a silvery tinge; body slender; large scales, smoother than red snapper; large eye; tail deeply forked. Average size 30-50 cm. Widespread, but only locally common in 200-800 m.



FRO FROSTFISH Lepidopus caudatus. Family Trichiuridae (cutlassfishes).

Widespread distribution in most cool oceans. Uniformly silver; skin smooth. The elongated, ribbon-like body, sharp head, and thin attachment of tail to body are clear distinguishing features. Average size 120-160 cm. Apparently fairly common in some off-shore areas, probably west of Cape Farewell and on Chatham Rise, but distribution and concentrations poorly known. Sometimes strands on beaches.



#### HAK

Merluccius australis English hake. Family Merluc-HAKE

ciidae (hakes), subfamily Merlucciinae. New Zealand and southern Australia; similar species elsewhere. Silvery-grey above; white below; small scales. Distinguished from cods by two dorsal fins and one anal fin (anal and second dorsal indented). Average size 50-90 cm. Occurs around the South Island in 200-800 m. Main trawling ground off Westland in winter.



#### нок

HOKI Macruronus novaezelandiae whiptail, blue hake, blue grenadier. Family Merlucciidae (hakes), subfamily Macruroninae.

New Zealand and southern Australia. Blue-green above; silvery on sides and belly; dark fins; skin smooth. Distinguished from the smaller javelin fish by the pointed snout, smaller eye, and silver belly. Average size 60–100 cm. Most abundant around the South Island in 200-800 m. Trawling grounds on outer shelf, Chatham Rise, and Campbell Plateau.



JMA

JACK MACKERELS Trachurus declivis (illustrated) and T. mackerels, mackerel scads. Famnovaezelandiae horse ily Carangidae (jacks).

New Zealand and southern Australia; T. novaezelandiae also in South-east Asia and Japan. Blue or green with faint brown bands above; silvery-white below; small scales and a row of rough scutes along the body. Average size *T. declivis* 35–50 cm, *T. novaezelandiae* 30–40 cm. Widespread and common on the bottom and in mid water around most of New Zealand out to 300 m. Main trawling grounds off the North Island's west coast.



#### LIN

LING Genypterus blacodes. Family Ophidiidae (cusk-eels). New Zealand and southern coasts of Australia and South America, with a similar species (king-klip) off southern Africa. Not related to European ling, but superficially similar. Robust and eel-shaped, becoming relatively thicker with increasing size. Orange-pink and brown above, with irregular markings; paler to white below; skin smooth. Average size 80-140 cm. Widespread and common in 200-700 m around the South Island



#### ORH

ORANGE ROUGHY Hoplostethus atlanticus. Family Trachichthyidae (roughies).

Widespread in temperate seas. Orange body and fins, some silver on sides; deep body; massive head with conspicuous bony ridges and cavities; scales small and irregular in shape and pat-tern, lateral line scales larger than body scales; a keel of larger scales on belly of smaller specimens. Average size 25-40 cm; juvenile specimens unknown from New Zealand. Spasmodic in distribution and abundance, but very common in some areas on the Chatham Rise in 500–1000 m.



#### RCO

RED COD Pseudophycis bacchus. Family Moridae (morid cods).

New Zealand and southern Australia. Greyish-pink above; white below; prominent dark pectoral spot; soft scales. Distinguished from hake and southern blue whiting by pink colouring and from bastard red cod by square-tipped tail. Less easily distinguished from several uncommon deep-water cods. Average size 30-50 cm. Occurs mainly around the South Island in 100-300 m. Main trawling grounds in the outer Canterbury Bight and off Westland.



#### SBW

SOUTHERN SOUTHERN BLUE WHITING Micromesistius australis southern poutassou. Family Gadidae (cods). New Zealand and southern South America; a similar species occurs in the Northern Hemisphere. Grey, faintly bluish above, with many small black spots; silvery-white below; small loose scales. Distinguished from small hake by three dorsal and two anal fins, but similar to some other deep-water cods. Average size 30-50 cm. Abundant on the Campbell Plateau in 300-600 m.



**SKI** GEMFISH *Rexea solandri* southern kingfish, silver kingfish, hake. Family Gempylidae (snake mackerels). New Zealand, southern Australia, and Japan. Blue back; silvery sides and belly; skin smooth. Distinguished from the barracouta by two lateral lines. Average size 60-90 cm. Occurs throughout coastal waters, but more common in the south in 150-200 m. Trawled incidentally throughout its range; no reside arounds known. major grounds known.



#### SOR

SPIKY OREO Neocyttus sp. spiky dory. Family Oreosomatidae (oreos).

New Zealand, southern Australia, and South Africa. Body grey; fins dark grey; scales rough, of moderate size, and can be dislodged with pressure. There are two other superficially similar species (black oreos, *Allocyttus* spp.) which have darker bodies, black fins, and rough scales which cannot be dislodged. Average size 20-30 cm. Occurs around and south of New Zealand in 300-1000 m Zealand in 300-1000 m.



# 

#### SWA BUT

SILVER WAREHOU Seriolella punctata = S. porosa spotted warehou. Family Centrolophidae (butterfishes).

fishes). New Zealand and southern coasts of Australia and South America. Blue-grey above; silvery-white below; head dark, with a coloured point extending towards dorsal fin; dark pectoral blotch and some spots along the side, fewer in larger fish; skin pitted. Distinguished from the other warehou species by skin and colour pattern and a more slender shape. Average size 40-60 cm. Mainly South Island, with main fishing grounds on Chatham Rise, in Canterbury Bight, and south-east of Stewart Island in 300-500 m.

SQU ARROW SQUID Nototodarus sloanii. Family Ommastrephidae.

Arkfow Storf *Notorotatus storni*. Fainty Onemastrephidae. New Zealand, with similar species in Australia, Fiji, Philippines, and Hawaii. Smooth, pale pink skin with blood-red to brick-red chromatophores scattered over the body and concentrated as a dark band along the back. Average size 15-35 cm mantle length. Concentrated in shelf regions along the South Island and southern North Island in depths of 50-250 m. Caught by jigging and trawling.



#### SSO

SMALL-SPINED OREO *Pseudocyttus maculatus*. Family Oreosomatidae (oreos). New Zealand and southern coasts of Australia, South Africa,

New Zealand and southern coasts of Australia, South Africa, and South America. Grey with large dark spots, more prominent in small fish. Scales very small and easily dislodged. Distinguished from other oreos by the very small scales, small fin spines, and generally rounded, smooth body form. Average size 20-40 cm. Occurs around and south of New Zealand in 400-800 m.

## **Appendix 2**

Relative stock density estimates (tonnes/kilometre trawled), estimate type (SM = Shinkai Maru, S1 = Step 1, S2 = Step 2), and bottom area\* (km<sup>2</sup>) by 200-m depth interval,  $\frac{1}{2}$ ° area†; and catch per standard hour fished (CPSHF) (tonnes/hour) by  $\frac{1}{2}$ ° area for the Japanese commercial fishing fleet. Latitude S and longitude E unless otherwise stated.

#### In all tables

- . . = no Japanese commercial fishing;
- = no bottom area in depth range.

<sup>\*</sup> Bottom areas are approximate because of inadequate bathymetric data.

<sup>&</sup>lt;sup>†</sup> For example, the area designated 48° 170° is the area from 48° to 48° 30' and 170° to 170° 30'.

East Coast, South Island (Area 1), April-June 1976

| 7                  |                  |     | 200-400 m         |            |         | 400-600 m |            |          | 600-800 m |         |      |          |
|--------------------|------------------|-----|-------------------|------------|---------|-----------|------------|----------|-----------|---------|------|----------|
|                    | Area             |     | Japanese<br>Comm. | Rel.       |         | Bottom    | Rel.       |          | Bottom    | Rel.    |      | Bottom   |
| Lat.               | Lor              | ıg. | CPSHF             | density    | Туре    | area      | density    | Туре     | area      | density | Туре | area     |
| 41 <sup>0</sup> 30 | 174 <sup>0</sup> | )   |                   | 0.107      | S2      | 79        | -          | -        | -         | -       | -    | -        |
| 41 30              | 174              | 30  |                   | 0.106      | S2      | 529       | 0.247      | S2       | 298       | 0.209   | S2   | 298      |
| 41 30              | 175              |     |                   | 0,102      | S2      | 93        | 0.238      | S2       | 53        | 0.188   | S2   | 179      |
| 42                 | 173              | 30  |                   | 0.100      | S2      | 72        | 0.261      | S2       | 39        | 0.277   | S2   | 52       |
| 42                 | 174              |     |                   | 0.104      | S2      | 196       | 0.260      | S2       | 91        | 0.250   | S2   | 65       |
| 42 30              | 173              | 30  | 1.96              | 0.081      | S1      | 209       | 0.267      | S1       | 209       | 0,270   | S1   | 150      |
| 42 30              | 174              | 30  |                   | -          | -       | -         | 0.264      | S2       | 39        | 0.205   | S2   | 332      |
| 42 30              | 175              |     | 1.28              | 0.088      | S2      | 20        | 0.309      | SM       | 300       | 0.176   | SM   | 339      |
| 42 30              | ) 175            | 30  | 1,02              | 1/20       | 1       | 622       | 0,155      | SM       | 469       | 0.140   | S1   | 554      |
| 43                 | 173              |     | 0,93              | 0,040      | S1      | 39        | 0.113      | S1       | 39        | -       | 1    | -        |
| 43                 | 173              | 30  | 3.82              | 0,140      | S1      | 283       | 0.519      | S1       | 315       | 0.526   | S1   | 295      |
| 43                 | 174              |     | 1.72              | -          | -       | -         | 0.304      | SM       | 1 130     | 0,237   | S1   | 597      |
| 43                 | 174              | 30  | 2,56              | 0,109      | S1      | 623       | 0.277      | SM       | 1 195     | 0.217   | S2   | 109      |
| 43                 | 175              |     |                   | 0.088      | S2      | 263       | 0.224      | S2       | 26        | -       | -    | -        |
| 43                 | 175              | 30  | 0,82              | 0.038      | S1      | 1 098     | 0,103      | S1       | 661       | -       | -    | -        |
| 43 30              | ) 173            | 30  | 3.15              | 0,095      | SM      | 257       | 0.247      | S2       | 45        | -       | -    | -        |
| 43 30              | ) 174            |     | 1,35              | 0.116      | S2      | 167       | 0.152      | SM       | 1 952     | 0,275   | S2   | 32       |
| 43 30              | ) 174            | 30  | 2.30              | 0,114      | S2      | 385       | 0.386      | SM       | 1 670     | 0.197   | 52   | 71       |
| 43 30              | ) 175            |     | 2.77              | 0,127      | S1      | 559       | 0,127      | SM       | 1 117     | -       | -    | -        |
| 43 30              | ) 175            | 30  |                   | 0,081      | S2      | 1 188     | 0.176      | S2       | 957       | -       | _    |          |
| 44                 | 171              |     | 1.81              | -          | -       | <u>~</u>  | -          | 2        | -         | -       | _    | -        |
| 44                 | 171              | 30  | 1.15              | -          | 1       |           | -          | <u>i</u> | -         | -       | -    | -        |
| 44                 | 172              |     | 7.31              | -          | -       | -         | -          | -        | -         | -       | -    | -        |
| 44                 | 172              | 30  | 3.08              | 0,205      | S1      | 37        | 3 <b>H</b> | -        | -         | -       | -    | (14)     |
| 44                 | 173              |     | 2.87              | 0,224      | SM      | 405       | 0.177      | SM       | 374       | 0.333   | S2   | 106      |
| 44                 | 173              | 30  | 2.74              | 0.271      | SM      | 237       | 0.270      | S1       | 748       | 0.378   | S2   | 936      |
| 44                 | 174              |     |                   | 0.136      | S2      | 19        | 0.229      | S2       | 848       | 0.267   | 52   | 1 266    |
| 44                 | 174              | 30  |                   | 0.122      | S2      | 31        | 0.227      | S2       | 1 435     | 0.139   | S2   | 611      |
| 44                 | 175              |     | 6.10              | 5 <b>2</b> | -       | _         | 0.124      | SM       | 1 809     | 0.084   | S2   | 343      |
| 44                 | 175              | 30  |                   | 0.103      | S2      | 256       | 0.174      | S2       | 1 272     | 0.080   | S2   | 156      |
| 44 30              | ) 171            |     | 4,93              | -          | -       | -         |            | -        |           | -       | -    | -        |
| 44 30              | ) 171            | 30  | 2.15              | 0,125      | S1      | 37        | 0,266      | S1       | 12        | -       | -    | -        |
| 44 30              | ) 172            |     | 1.03              | 0.063      | S1      | 299       | 0.144      | 51       | 212       | 0.351   | S2   | 94       |
| 44 30              | 172              | 30  | 1.87              | 0.122      | S1      | 212       | 0.329      | SM       | 474       | 0.318   | S2   | 156      |
| 44 30              | 173              |     |                   | -          | -       |           | 0.157      | SM       | 237       | 0.306   | S2   | 543      |
| 44 30              | 173              | 30  |                   | -          | -       |           | 0.229      | S2       | 19        | 0.301   | S2   | 349      |
| 44 30              | 174              |     |                   | -          | <u></u> | -         | 72         | -        |           | 0.210   | S2   | 561      |
| 44 30              | 174              | 30  | 0                 | -          | _       | -         | -          | -        | -         | 0.094   | S2   | 705      |
| 44 30              | 175              |     | 0.32              | -          | _       | -         | -          | -        | _         | 0 044   | S1   | 911      |
| 44 30              | 175              | 30  | 0.45              | _          | _       | _         | -          | -        | _         | 0.062   | S1   | 125      |
| 45                 | 171              |     | 2,99              | 0.170      | S1      | 61        | 0.355      | S1       | 31        | 0.413   | S1   | 37       |
| 45                 | 171              | 30  | 2,79              | 0,162      | SI      | 197       | 0.341      | S1       | 215       | 0.384   | 51   | 215      |
| 45 30              | 170              | 30  |                   | 0.160      | S2      | 43        | 0.329      | \$2      | 31        | 0.007   |      | 41J<br>_ |
| 45 30              | ) 171            |     | 3,30              | 0,187      | S1      | 141       | 0.385      | S1       | 184       | 0.455   | S1   | 340      |
| 46                 | 171              |     | <br>0 8           | =          | -       |           | 0.325      | S2       | 30        | 0.423   | S2   | 102      |

Chatham Rise (Area 2), November 1975

|         |          |          |         | 200-400 m |        |              | 400-600 m |              |               | 600-800 m |        |
|---------|----------|----------|---------|-----------|--------|--------------|-----------|--------------|---------------|-----------|--------|
|         |          | Japanese |         |           |        |              |           |              |               |           |        |
| P       | теа      | Comm.    | Rel.    |           | Bottom | Rel.         |           | Bottom       | Rel.          |           | Bottom |
| Lat.    | Long.    | CPSHF    | density | Туре      | area   | density      | Туре      | area         | density       | Type      | area   |
| 12° 30' | 1760     |          | _       | _         | 101    | 0 184        | 52        | 697          | 0 264         | \$2       | 30.2   |
| 42 30   | 176 30   | ••       | 0 102   | -<br>-    | 26     | 0.104        | 52        | 745          | 0.204         | 52        | 302    |
| 42 30   | 170 50   | • •      | 0.102   | 52        | 20     | 0.207        | 52        | /45          | 0.270         | 52        | 263    |
| 42 30   | 1//      |          | 0.104   | 52        | 141    | 0.24/        | 52        | 520          | 0.277         | 52        | 283    |
| 42 30   | 177 30   | 1.62     | 0.105   | SI        | 347    | 0.301        | SM        | 379          | 0.278         | S1        | 225    |
| 42 30   | 178      | 1.65     | -       | -         | 200    | 0,236        | SM        | 128          | 0.297         | SM        | 263    |
| 42 30   | 178 30   | • •      | -       | -         | -      | 0.189        | SM        | 135          | 0.276         | S2        | 250    |
| 42 30   | 179      |          | -       | -         |        | 8.50         | ≅.        |              | 0.206         | S2        | 347    |
| 42 30   | 179 30   | ••       | -       | -         |        | -            | -         | 5 <b>8</b> 0 | 0.138         | S2        | 360    |
| 42 30   | 179 30 W |          | -       | -         | -      | 0.059        | S2        | 128          | 0.120         | SM        | 475    |
| 42 30   | 179 W    |          | -       | -         |        | 0.065        | S2        | 276          | 0.127         | S2        | 437    |
| 42 30   | 178 30 W |          | -       | -         | -      | 0.078        | S2        | 327          | 0.138         | S2        | 340    |
| 42 30   | 178 W    |          | -       | -         | -      | 0.076        | S2        | 411          | 0.149         | S2        | 231    |
| 42 30   | 177 30 W |          | -       | -         | 1      | 0.063        | 52        | 30.8         | 0 157         | 52        | 295    |
| 42 30   | 177 W    | ••       | _       | _         |        | 0.060        | C2        | 51           | 0.163         | 52        | 275    |
| 42 30   | 176 30 W |          |         | -         | 200    | 0.000        | 52        | 71           | 0.160         | 52        | 4,50   |
| 42 30   | 176 W    | ••       | -       | -         |        | 3 <b>2</b> 1 |           |              | 0,109         | 52        | 201    |
| 42 30   | 175 20 W | ••       | -       | _         |        | -            | -         |              | 0.173         | 52        | 110    |
| 42 50   | 175 JU W | ••       | 0 100   | -         | 1 516  | -            | -         | -            | 0.177         | 52        | 20     |
| 43      | 170      | ••       | 0.100   | 52        | 1 516  | 0            | SM        | 655          |               | -         | -      |
| 43      | 170 30   | ••       | 0.102   | SZ        | 1 850  | 0.197        | S2        | 334          | 5 <del></del> | ≂         | -      |
| 43      | 1//      | • •      | 0.103   | S2        | 2 126  | 0.221        | S2        | 26           |               | -         |        |
| 43      | 1// 30   | ••       | 0.104   | S2        | 2 151  | -            | -         | 2 <b>4</b> 3 | 2 <b>6</b> 2  | -         |        |
| 43      | 1/8      |          | 0.102   | S 2       | 1 760  | 0.195        | S2        | 372          |               | 8         | -      |
| 43      | 178 30   | • •      | 0.098   | S2        | 1 349  | 0.152        | S2        | 822          | -             | =         | -      |
| 43      | 179      | • •      | 0.093   | S 2       | 828    | 0.149        | SM        | 1 317        | 300           | -         | -      |
| 43      | 179 30   | • •      | 0.088   | S2        | 244    | 0.057        | SM        | 1 927        | 3 <b>4</b> 3  | -         | -      |
| 43      | 179 30 W | 0.56     | 0.084   | S2        | 13     | 0.031        | SM        | 2 158        |               | -         | -      |
| 43      | 179 W    |          | 0.079   | S2        | 257    | 0.057        | S2        | 1 907        |               | -         | -      |
| 43      | 178 30 W |          | 0.072   | S2        | 109    | 0.089        | S2        | 2 023        | 142           | -         | -      |
| 43      | 178 W    |          | 0.076   | S2        | 469    | 0.091        | S2        | 1 702        | 74            | -         | -      |
| 43      | 177 30 W |          | 0.094   | 52        | 700    | 0.048        | SM        | 1 374        |               | -         | -      |
| 43      | 177 W    | 0.33     | 0.065   | SM        | 970    | 0.032        | SM        | 456          | 0 164         | \$2       | 315    |
| 43      | 176 30 W | 0100     | 0 1/0   | SM        | 30.8   | 0.075        | SM        | 302          | 0 160         | 52        | 669    |
| 43      | 176 W    | ••       | 0 118   | 52        | 591    | 0.073        | 57        | 880          | 0.17/         | 52        | 206    |
| 43      | 175 30 W | ••       | 0.100   | 52        | 103    | 0.075        | 52        | 1 201        | 0.177         | 52        | 200    |
| 43      | 175 W    | • •      | 0.100   | 52        | 195    | 0.070        | 32        | 1 201        | 0.1/7         | 52        | /19    |
| 4.2     | 17/ 20 M | • •      | 0.105   | 52        | 19     | 0,080        | 52        | 122          | 0.180         | 52        | 1 /02  |
| 43      | 174 SU W | • •      | 0.100   | -         |        | -            | -         | -            | 0.183         | S2        | 655    |
| 43 30   | 170      | ••       | 0.100   | S2        | 9/4    | 0.169        | S2        | 1 202        | -             | -         | -      |
| 43 30   | 176 30   | ••       | 0.100   | S2        | 1 259  | 0.178        | S2        | 823          | 0.264         | S 2       | 44     |
| 43 30   | 1/7      | • •      | 0.101   | S2        | 1 221  | 0.185        | S2        | 620          | 0.268         | S2        | 323    |
| 43 30   | 1// 30   | • •      | 0.101   | S2        | 810    | 0.181        | S2        | 854          | 0.270         | S2        | 367    |
| 43 30   | 178      |          | 0.099   | S2        | 835    | 0.160        | S2        | 899          | 0.266         | S2        | 316    |
| 43 30   | 178 30   | • •      | 0.096   | S2        | 702    | 0.133        | S2        | 1 050        | 0.246         | S2        | 392    |
| 43 30   | 179      |          | 0.092   | S2        | 247    | 0,111        | S2        | 1 746        | 0.208         | S2        | 152    |
| 43 30   | 179 30   |          | 0.087   | S2        | 285    | 0.075        | S2        | 1 860        | 0.170         | S2        | 32     |
| 43 30   | 179 30 W |          | 0.082   | S2        | 1 379  | 0.058        | S2        | 766          | -             | -         | -      |
| 43 30   | 179 W    |          | 0.076   | S2        | 1 974  | 0.070        | S2        | 184          | -             | -         | -      |
| 43 30   | 178 30 W |          | 0.060   | S2        | 354    | 0.109        | S2        | 1 778        | -             | -         | -      |
| 43 30   | 178 W    | 0.80     | 0.019   | S1        | 785    | 0.150        | SM        | 1 360        | 1. A          | -         | -      |

| Chatham | Rise | (Area | 2), | November | 1975 | (cont. | ) |
|---------|------|-------|-----|----------|------|--------|---|
|---------|------|-------|-----|----------|------|--------|---|

|     |     |                  |     |   |          |          | 200-400 m |                 |              | 400-600 m |        |         | 600-800 m       |                |
|-----|-----|------------------|-----|---|----------|----------|-----------|-----------------|--------------|-----------|--------|---------|-----------------|----------------|
|     |     |                  |     |   | Japanese | 1202404  |           | -22000/06/04/06 | 02052        |           |        | 10000   |                 |                |
| -3  | E   | Irea             |     |   | Comm.    | Rel.     | 220)      | Bottom          | Rel.         | 123 C 124 | Bottom | Rel.    | -               | Bottom         |
| La  | t.  | Lon              | g.  |   | CPSHF    | density  | Туре      | area            | density      | Type      | area   | density | Type            | area           |
| 43° | 30' | 177 <sup>0</sup> | 30' | W |          | 0.127    | SM        | 1 671           | 0.090        | S2        | 475    | 2       |                 | -              |
| 43  | 30  | 177              |     | W |          | 0.101    | S2        | 734             |              |           |        | -       | -               | ÷.             |
| 43  | 30  | 176              |     | W |          | 0.110    | S2        | 95              | <del>.</del> |           | -      | -       | 1 <b>-</b> 1    | -              |
| 43  | 30  | 175              | 30  | W |          | 0.106    | S2        | 1 487           | 0.078        | S2        | 32     | ÷ :     | 2. <del>4</del> | ; <del>2</del> |
| 43  | 30  | 175              |     | W |          | 0.103    | S2        | 475             | 0.081        | S2        | 696    | 0.181   | S2              | 664            |
| 43  | 30  | 174              | 30  | W | **       | =        | 1.        |                 |              |           | 5      | 0.183   | S2              | 1 373          |
| 44  |     | 176              |     |   |          | 0.098    | S2        | 405             | 0.158        | S2        | 715    | 0.254   | S2              | 589            |
| 44  |     | 176              | 30  |   |          |          | -         |                 | 0.162        | S2        | 532    | 0.257   | S2              | 601            |
| 44  |     | 177              |     |   |          |          | -         | ÷.              | 0.162        | S2        | 44     | 0.259   | S2              | 519            |
| 44  |     | 177              | 30  |   |          | -        |           | =               | -            |           |        | 0.257   | S2              | 82             |
| 44  |     | 178              | 30  |   |          | +        | -         | -               | -            | 2000      | ×      | 0.234   | S2              | 114            |
| 44  |     | 179              |     |   |          | <u> </u> | -         | -               |              | 120       | -      | 0.209   | S2              | 690            |
| 44  |     | 179              | 30  |   |          | 3        | -         | 8               | 0.087        | S2        | 329    | 0.184   | \$2             | 411            |
| 44  |     | 179              | 30  | W |          | 0.083    | S2        | 158             | 0.078        | S2        | 608    | 0.168   | S2              | 589            |
| 44  |     | 179              |     | W |          | 0.078    | S2        | 563             | 0.084        | S2        | 443    | 0.162   | S2              | 677            |
| 44  |     | 178              | 30  | W |          | 0.072    | S2        | 177             | 0.105        | S2        | 892    | 0.161   | S2              | 589            |
| 44  |     | 178              |     | W |          | -        | -         |                 | 0.119        | S2        | 1 240  | 0.164   | S2              | 392            |
| 44  |     | 177              | 30  | W | • •      | -        |           | -               | 0.101        | S2        | 949    | 0.167   | S2              | 785            |
| 44  |     | 177              |     | W |          | 0.104    | S2        | 462             | 0.084        | S2        | 1 190  | 0.171   | S2              | 405            |
| 44  |     | 176              | 30  | W |          | 0.102    | S2        | 380             | 0.079        | S2        | 272    |         |                 |                |
| 44  |     | 175              | 30  | W |          | 0.103    | S2        | 487             | 0.081        | 52        | 165    | 0.180   | S2              | 32             |
| 44  |     | 175              |     | W |          | 0.101    | 52        | 519             | 0.083        | S2        | 595    | 0.182   | S2              | 601            |
| 44  | 30  | 176              |     |   |          | -        |           | <u> </u>        | 3 <b>4</b> 3 |           | -      | 0.249   | S2              | 56             |
| 44  | 30  | 177              |     | W | ••       |          |           | -               | 0.089        | S2        | 31     | 0.175   | S2              | 168            |
| 44  | 30  | 176              | 30  | W |          | 0.100    | S2        | 37              | 0.085        | S2        | 530    | 0.177   | S2              | 112            |
| 44  | 30  | 176              |     | W |          | 0.100    | S2        | 287             | 0.084        | S2        | 231    | 0.179   | S2              | 112            |
| 44  | 30  | 175              | 30  | W | 2.8      | 0.100    | S2        | 25              | 0.084        | S2        | 75     | 0.181   | S2              | 243            |
| 44  | 30  | 175              |     | W | ••       |          |           |                 | -            | -         |        | 0.183   | S2              | 87             |

#### Chatham Rise (Area 2), May 1976

|         |          |              |          | 200-400 m    |        |         | 400-600 m |        |         | 600-800 m |            |  |
|---------|----------|--------------|----------|--------------|--------|---------|-----------|--------|---------|-----------|------------|--|
|         |          | Japanese     |          |              |        |         |           | _      |         |           |            |  |
| 4       | Area     | Comm.        | Rel.     |              | Bottom | Rel.    | _         | Bottom | Rel.    | -         | Bottom     |  |
| Lat.    | Long.    | CPSHF        | density  | Туре         | area   | density | Туре      | area   | density | Туре      | атеа       |  |
| 42° 30' | 1760     | 1 53         | 0.22     | -            | _      | 0 267   | SM        | 687    | 0.075   | SM        | 302        |  |
| 42 30   | 176 30   | 1.00         | 12       |              | 26     | 0.377   | SM        | 745    | 0 291   | SM        | 263        |  |
| 42 30   | 170 30   | 2 46         | _        | -            | 141    | 0.344   | SM        | 520    | 0 631   | SM        | 183        |  |
| 42 30   | 177 30   | 2.040        | _        | 2            | 347    | 0.161   | SM        | 370    | 0.242   | SM        | 205        |  |
| 42 30   | 179      | 3 67         | _        |              | 547    | 0.388   | SM        | 128    | 0.298   | SM        | 763        |  |
| 42 30   | 178 30   | 5 60         | _        |              | -      | 0.317   | SM        | 135    | 0 222   | SM        | 250        |  |
| 42 30   | 170 50   | 5.07         | _        | -            | _      | 0,317   | 511       | 100    | 0 233   | 52        | 347        |  |
| 42 30   | 179 30   | ••           | _        |              | _      | -       | -         | _      | 0.232   | S2        | 360        |  |
| 42 30   | 179 30 W | • •          | _        |              | _      | 0.182   | \$2       | 128    | -       | -         | 300        |  |
| 42 30   | 179 W    | • •          |          |              | _      | 0.136   | 52        | 276    | -       | -         | -          |  |
| 42 30   | 178 30 W | ••           | -        |              | _      | 0 103   | 52        | 327    | -       | -         | -          |  |
| 42 30   | 178 W    | ••           | -        |              | -      | 0.081   | 52        | 411    | -       | -         | -          |  |
| 42 30   | 177 30 W | ••           | _        | -            | _      | 0.066   | \$2       | 308    | -       | -         | -          |  |
| 42 30   | 177 W    | ••           | _        |              | _      | 0.054   | 52        | 51     | -       | _         |            |  |
| 42 30   | 176 30 W | • •          | _        |              | _      | 0.034   | -         | -      | -       | -         | -          |  |
| 42 30   | 176 W    | ••           |          |              | -      | -       | _         | -      | -       | -         | -          |  |
| 42 30   | 175 30 W |              | -        |              | _      | _       | -         | -      | -       | -         |            |  |
| 43      | 176      |              | 2        |              | 1 516  | 0.302   | 52        | 655    | -       | -         | _          |  |
| 43      | 176 30   | ••           | 2        | -            | 1 850  | 0.329   | 52        | 334    | -       | -         | -          |  |
| 43      | 177      |              | -        | -            | 2 126  | 0.314   | S2        | 26     | -       | _         | :-:        |  |
| 43      | 177 30   |              |          | -            | 2 151  | -       | -         | -      | -       | -         | -          |  |
| 43      | 178      |              | 2        | (a)          | 1 760  | 0.304   | S2        | 372    | -       | -         | -          |  |
| 43      | 178 30   |              | -        | -            | 1 349  | 0.302   | S2        | 822    | -       | -         | -          |  |
| 43      | 179      | ••           | -        | -            | 828    | 0,275   | S2        | 1 317  | -       | -         | -          |  |
| 43      | 179 30   |              | -        | -            | 244    | 0.224   | 52        | 1 927  | -       | -         | -          |  |
| 43      | 179 30 W |              | 2        |              | 13     | 0.169   | S2        | 2 158  | -       | -         | -          |  |
| 43      | 179 W    |              | <u>_</u> | -            | 257    | 0.124   | S2        | 1 907  | -       | -         | -          |  |
| 43      | 178 30 W |              | -        | -            | 109    | 0.095   | S2        | 2 023  | -       | -         | -          |  |
| 43      | 178 W    |              | -        | -            | 469    | 0.077   | S2        | 1 702  | -       | _         | -          |  |
| 43      | 177 30 W |              | 420      | -            | 700    | 0.060   | SM        | 1 374  | -       | -         | -          |  |
| 43      | 177 W    | 0.39         | <u>2</u> | ÷            | 970    | 0.001   | S1        | 456    | -       | -         | -          |  |
| 43      | 176 30 W |              | -        | -            | 398    | 0.051   | SM        | 302    | -       | -         | -          |  |
| 43      | 176 W    | 0.002        | -        | -            | 591    | 0.064   | S2        | 880    | -       | -         | -          |  |
| 43      | 175 30 W | 12           | -        |              | 193    | 0.079   | S2        | 1 201  | -       | -         |            |  |
| 43      | 175 W    | 10.541E      | -        |              | 19     | 0.091   | S2        | 122    | -       | -         | -          |  |
| 43      | 174 30 W | ( <b>1</b> ) | -        | -            | -      | -       | -         | -      | -       | -         | -          |  |
| 43 30   | 176      | 7.2          | -        | -            | 974    | 0.303   | S2        | 1 202  | -       | -         | -          |  |
| 43 30   | 176 30   | 100          | -        |              | 1 259  | 0.309   | S2        | 823    | 0.199   | S2        | 44         |  |
| 43 30   | 177      |              | -        | -            | 1 221  | 0.302   | S2        | 620    | 0.158   | S2        | 323        |  |
| 43 30   | 177 30   |              | -        | -            | · 810  | 0.290   | S2        | 854    | 0,118   | S2        | 367        |  |
| 43 30   | 178      | 1212         | -        |              | 835    | 0.286   | S2        | 899    | 0.155   | S2        | 316        |  |
| 43 30   | 178 30   | 150          | -        | 3 <b>2</b> 3 | 702    | 0.276   | S2        | 1 050  | 0.193   | S2        | 392        |  |
| 43 30   | 179      |              | -        | -            | 247    | 0.250   | S2        | 1 746  | 0.206   | S2        | 152        |  |
| 43 30   | 179 30   |              | -        |              | 285    | 0.206   | S2        | 1 860  | 0.210   | S2        | 32         |  |
| 43 30   | 179 30 W |              | -        | -            | 1 379  | 0.157   | S2        | 766    | -       | -         | -          |  |
| 43 30   | 179 W    | 25,51        | -        | -            | 1 974  | 0.117   | S2        | 184    | -       | -         | -          |  |
| 43 30   | 178 30 W |              | -        | -            | 354    | 0.094   | S2        | 1 778  | -       | -         | -          |  |
| 43 30   | 178 W    | 000          | -        | -            | 785    | 0.078   | SM        | 1 360  | -       | -         | 2 <b>—</b> |  |

|         |      |       |          |                 |                      | 200-400 m  |        |              | 400-600 m |                              |              | 600-800 m |                 |
|---------|------|-------|----------|-----------------|----------------------|------------|--------|--------------|-----------|------------------------------|--------------|-----------|-----------------|
|         | 2    |       |          | Japanese        | 10.21                |            |        | 0-1          |           | Patter                       | Rel          |           | Bottom          |
|         | Area |       |          | Comm.           | Kel.                 | 1000       | BOLLOM | Rel.         | -         | BOCCOM                       | her.         | True o    | Doccom          |
| Lat.    | Lon  | g.    |          | CPSHF           | density              | Type       | area   | density      | Type      | area                         | density      | type      | died            |
| 43° 30' | 1770 | 30'   | W        |                 | . <b></b>            | -          | 1 671  | 0.076        | S2        | 475                          | S#3          | 4         | . <del></del> : |
| 43 30   | 177  |       | W        |                 | -                    | -          | 734    | 3.75         | -         |                              | -            | -         |                 |
| 43 30   | 176  |       | W        |                 |                      | -          | 95     | (H)          | -         | (m)                          |              | 7         |                 |
| 43 30   | 175  | 30    | W        | 2.0             | 14 C                 | <u></u>    | 1 487  | 0.083        | S2        | 32                           |              | =         | ( <b>-</b> )    |
| 43 30   | 175  | 220   | W        |                 |                      |            | 475    | 0.093        | 52        | 696                          | 14 C         | -         | 1.00            |
| 43 30   | 174  | 30    | W        |                 | -                    | -          | 181    | -            |           | -                            |              | -         | -               |
| 44      | 176  |       |          |                 |                      | -          | 405    | 0.296        | 52        | 715                          | 0.176        | S2        | 589             |
| 44      | 176  | 30    |          | 635             | 7 <b>4</b>           | <u>1</u> 2 |        | 0.296        | S2        | 532                          | 0.146        | S2        | 601             |
| 44      | 177  | ಹತ್ರಾ |          |                 | -                    | ÷          |        | 0.292        | S2        | 44                           | 0.085        | S2        | 519             |
| 44      | 177  | 30    |          | 0.56            |                      | -          |        |              |           | -                            | 0.042        | S1        | 82              |
| 44      | 178  | 30    |          | 23              | -                    | ÷          |        | 2.00         | -         | -                            | 0.147        | S2        | 114             |
| 44      | 179  |       |          | 22 A            | 24                   | <u>_</u>   | -      | 3 <b>4</b> 3 | +         |                              | 0.179        | S2        | 690             |
| 1.4     | 179  | 30    |          |                 | -                    | 2          | -      | 0.191        | S2        | 329                          | 0.194        | S2        | 411             |
| 44      | 179  | 30    | W        |                 | 0975<br>5 <b>-</b> 5 | -          | 158    | 0.151        | S2        | 608                          |              |           |                 |
| 44      | 179  |       | W        | 0.07            | -                    | -          | 563    | 0.119        | S2        | 443                          | -            | -         |                 |
| 44      | 178  | 30    | W        | 1915            | 2                    | 2          | 177    | 0.104        | S2        | 892                          | -            | ÷         | .= :            |
| 44      | 178  |       | ü        | 25.2            |                      | 2          |        | 0.111        | SM        | 1 240                        | 2 <b>4</b> 4 | <u> </u>  | 3 <b>-</b> 5    |
| 44      | 177  | 30    | W        |                 |                      | -          | -      | 0.096        | S2        | 949                          | -            | <u> </u>  | 727             |
| 44      | 177  | 5.6   | W        |                 | -                    | -          | 462    | 0.084        | S2        | 1 190                        | -            | -         |                 |
| 44      | 176  | 30    | ŵ        | 5.5             | 1                    | -          | 380    | 0.080        | S2        | 272                          | -            | -         |                 |
| 44      | 175  | 30    | ŵ        |                 | -                    | -          | 487    | 0.090        | S2        | 165                          | -            | <u>_</u>  | 340             |
| 44      | 175  | 20    | ŵ        |                 | 2000<br>1 - 1        | -          | 519    | 0.097        | S2        | 595                          |              | ÷         | -               |
| 44 30   | 176  |       |          | 12230           |                      | -          | -      |              | -         | 1990 - 1990<br>19 <b>9</b> 1 | 0,161        | S2        | 56              |
| 44 30   | 177  |       | w        | S               | -                    |            |        | 0.096        | S2        | 31                           |              | -         |                 |
| 44 30   | 176  | 30    |          | (****)          | _                    | _          | 37     | 0.093        | \$2       | 530                          |              | 2         |                 |
| 44 30   | 176  | 50    | <b>1</b> | 24040           | -                    | -          | 287    | 0.094        | \$2       | 231                          | -            | -         | -               |
| 44 30   | 175  | 20    | 1.1      | (***)<br>(2.14) |                      | _          | 25     | 0.098        | \$2       | 75                           |              | -         | -               |
| 44 30   | 175  | 50    | 1.7      | ••              | -                    | -          | 25     | 0.070        | 32        |                              | 1            | -         | 24              |
| 44 50   | 1/0  |       | w        |                 | -                    | -          | -      | -            | -         | -                            | -            | -         | -               |

#### Chatham Rise (Area 2), May 1976 (cont.)

#### Chatham Rise (Area 2W), July-September 1976

|        |               | Innonese       |                 | 200-400 m |                |                 | 400-600 m |                |                 | 600-800 m    |                |
|--------|---------------|----------------|-----------------|-----------|----------------|-----------------|-----------|----------------|-----------------|--------------|----------------|
| Lat.   | Area<br>Long. | Comm.<br>CPSHF | Rel.<br>density | Туре      | Bottom<br>area | Rel.<br>density | Туре      | Bottom<br>area | Rel.<br>density | Туре         | Bottom<br>area |
| 42° 30 | 1760          |                | _               | _         |                | 0.005           | CM        | 697            | 0.007           | C 1          | 202            |
| 42 30  | 176 30        | 1 10           |                 | -         | 24             | 0.075           | SPI       | 745            | 0.097           | 52           | 302            |
| 42 30  | 170 50        | 1 37           | -               | -         | 141            | 0.103           | SM        | 740            | 0.000           | SM           | 263            |
| 42 30  | 177 30        | 0.92           | _               | -         | 247            | 0.209           | SPI       | 320            | 0.174           | SM           | 283            |
| 42 30  | 178           | 0.72           |                 | -         | 547            | 0.132           | SPI       | 128            | 0.252           | SM           | 225            |
| 42 30  | 178 30        |                | 2               | -         |                | 0.120           | SZ        | 120            | 0.007           | SM           | 203            |
| 42 30  | 179           | 5-5-5<br>      |                 |           | 2              | 0.071           | SPI       | 122            | 0.113           | 52           | 250            |
| 42 30  | 179 30        | ••.            |                 | 100       |                | _               | -         | -              | 0.119           | 52           | 347            |
| 43     | 176           | •:•<br>876     |                 |           | 1 516          | 0 199           | SM        | -              | 0.110           | 32           | 360            |
| 43     | 176 30        | 5.8<br>-       |                 | -         | 1 850          | 0.156           | 52        | 334            | 5               |              | -              |
| 43     | 177           | ***            |                 |           | 2 126          | 0.161           | 52        | 26             | 5               | 1.50         | -              |
| 43     | 177 30        | ••             |                 |           | 2 151          | 0.101           | 52        | 20             |                 |              | -              |
| 43     | 178           |                |                 |           | 1 760          | 0 109           | \$2       | 372            |                 | -            | -              |
| 43     | 178 30        | 0.63           |                 |           | 1 349          | 0.060           | SM        | J/2<br>822     | 2               | -            | -              |
| 43     | 179           |                |                 | 1.74      | 828            | 0.084           | \$2       | 1 317          |                 | 2554<br>5457 | -              |
| 43     | 179 30        |                |                 |           | 244            | 0.004           | 52        | 1 927          |                 |              | -              |
| 43 30  | 176           | 5.5            |                 |           | 97/            | 0 155           | 52        | 1 202          | -               | -            | -              |
| 43 30  | 176 30        | 5.0            |                 |           | 1 259          | 0.150           | 52        | 1 202          | 0 129           | -            | -              |
| 43 30  | 177           | **             |                 | 100       | 1 221          | 0.136           | 52        | 620            | 0.120           | 52           | 222            |
| 43 30  | 177 30        | 1.03           | -               |           | 810            | 0,110           | 52        | 854            | 0.137           | 52           | 343            |
| 43 30  | 178           | 210            |                 |           | 835            | 0 112           | 51        | 800            | 0.126           | 32           | 216            |
| 43 30  | 178 30        | 51.5           | <u>a</u>        | -         | 702            | 0.002           | 52        | 1 050          | 0.120           | 32           | 203            |
| 43 30  | 179           |                | -               |           | 247            | 0.092           | 52        | 1 746          | 0,120           | 52           | 152            |
| 43 30  | 179 30        |                | -               |           | 285            | 0 103           | 52        | 1 860          | 0 1 2 1         | 52           | 32             |
| 44     | 176           |                | 2               |           | 405            | 0 146           | 52        | 715            | 0 127           | 52           | 590            |
| 44     | 176 30        |                | <u>_</u>        | -         | 405            | 0 142           | \$2       | 532            | 0,127           | 52           | 601            |
| 44     | 177           | 5.5<br>        |                 | 1.52      | _              | 0.132           | 52        | 200            | 0.133           | 52           | 510            |
| 44     | 177 30        |                |                 | -         | -              | 0.132           | 52        | 44             | 0.132           | 52           | 217            |
| 44     | 178 30        |                | 2               |           |                | -               | -         | -              | 0.125           | 52           | 11/            |
| 44     | 179           |                | -               | -         | -              | -               | -         | -              | 0.123           | 52           | 114<br>600     |
| 44     | 179 30        | 505)<br>2020   |                 |           | _              | 0 110           | 52        | 320            | 0.123           | 52           | 690            |
| 44 30  | 176           |                |                 |           | -              | 0.110           | 52        | 527            | 0.125           | 52           | 411            |
|        |               |                |                 |           | -              | -               | -         | -              | U.120           | 52           | 20             |

| Bounty | (Area | 3E), | December | 1976-January | 1977 |
|--------|-------|------|----------|--------------|------|
|        |       |      |          |              |      |

|                 |       |        |                   |             | 200-400 m    |          |                   | 400-600 m |        |               | 600-800 m |        |
|-----------------|-------|--------|-------------------|-------------|--------------|----------|-------------------|-----------|--------|---------------|-----------|--------|
| 2.00            | Area  |        | Japanese<br>Comm. | Rel.        |              | Bottom   | Rel.              | 10.000    | Bottom | Rel.          | Turne     | Bottom |
| Lat.            | Long  | 3.     | CPSHF             | density     | Type         | area     | density           | Type      | area   | density       | Type      | area   |
| 47 <sup>0</sup> | 1760  | 30'    |                   | <u></u>     | -            | -        | -                 | -         | -      | 0.030         | S2        | 91     |
| 47              | 177   | 100.00 |                   | <u> </u>    | -            | -        | 0.113             | S2        | 46     | 0.027         | S2        | 273    |
| 47              | 177   | 30     |                   | <u>ê</u>    | -            |          |                   | -         | -      | 0.024         | 52        | 46     |
| 47              | 178   |        |                   | <b>2</b>    | -            |          | 0.096             | S2        | 46     | 0.023         | S2        | 455    |
| 47              | 178   | 30     | 0.55              | 0.031       | S2           | 228      | 0.125             | 52        | 273    | 0.028         | SZ        | 319    |
| 47              | 179   |        |                   | 0.026       | S2           | 46       | 0.156             | S2        | 91     | 0.044         | S2        | 91     |
| 47              | 179   | 30     | 1990              | 0.023       | S2           | 273      | 0.162             | S2        | 319    | 0,068         | S2        | 228    |
| 47              | 179   | 30 W   | 10                |             | 3 <b>4</b> 8 | <u>_</u> | 0.149             | S2        | 91     | 0.084         | S2        | 182    |
| 47 30           | 176   | 30     |                   | <u> 2</u>   | -            | -        | 1993-199 <u>-</u> | -         | -      | 0.029         | S2        | 45     |
| 47 30           | 177   | 10000  |                   | -           | -            | -        | 0.112             | S2        | 45     | 0.026         | S2        | 89     |
| 47 30           | 177   | 30     |                   | -           |              |          |                   | 200       |        | 0.023         | S2        | 45     |
| 47 30           | 178   |        |                   | -           | i = 1        | ×        | 0.066             | SM        | 891    | 0.021         | SM        | 891    |
| 47 30           | 178   | 30     | 727               | 0.037       | S2           | 1 515    | 0.130             | S2        | 178    | · · · · ·     | 100       | -      |
| 47 30           | 179   |        |                   | 0.026       | S2           | 178      |                   | -         |        | -             | -         | -      |
| 47 30           | 179   | 30     |                   | 0.021       | S2           | 1 203    | 0.186             | S2        | 45     | . <del></del> | -         | -      |
| 47 30           | 179   | 30 W   | 22                | 0.021       | S2           | 446      | 0.128             | S2        | 1 381  | 0.102         | 52        | 267    |
| 47 30           | 179   | W      |                   | 1.000       |              |          | 0.121             | S2        | 267    | 0.100         | S2        | 624    |
| 48              | 178   |        |                   | <u> </u>    | -            |          | 0.116             | S2        | 87     | 0.024         | S2        | 394    |
| 48              | 178   | 30     |                   | 0.049       | SM           | 262      | 0.135             | SM        | 700    | 0.031         | S2        | 1 049  |
| 48              | 179   |        |                   | 0.026       | S2           | 44       | 0.207             | SM        | 962    | 0.058         | S2        | 525    |
| 48              | 179   | 30     | 5.75              | 0.019       | SM           | 874      | 0.306             | SM        | 568    | 0.098         | S2        | 612    |
| 48              | 179   | 30 W   |                   | 0.020       | \$2          | 656      | 0.055             | SM        | 918    | 0.111         | SM        | 568    |
| 48              | 179   | W      |                   |             |              | -        | 0.103             | S2        | 262    | 0.105         | S2        | 481    |
| 48 30           | 178   | 30     | 2/2               | -           | 3=5          | -        |                   |           | -      | 0.041         | S2        | 1 312  |
| 48 30           | 179   |        |                   | <u>≃</u> 7. | 220          | -        |                   |           | 19 I.  | 0.063         | S2        | 1 968  |
| 48 30           | 179   | 30     |                   | -           | -            | -        | -                 | 14        | -      | 0.092         | S2        | 1 924  |
| 48 30           | 179   | 30 W   | 22                | -           | -            | -        |                   |           | -      | 0.104         | S2        | 612    |
| 49              | 179   |        | 33                |             | 2 <b>-</b>   | -        | -                 |           | -      | 0.064         | S2        | 686    |
| 49              | 179   | 30     |                   | -           | -            | <u></u>  |                   |           | 27     | 0.081         | 52        | 171    |
| 100             | ± 1 1 |        | **                |             |              |          |                   |           |        | ~ B ~ ~ ~     | 0.00      | 1000 C |

#### Campbell Plateau (Area 3W), January 1976

|        |                  |          |                           | 200-400 m   |        |         | 400-600 m |         |              | 600-800 m        |               |
|--------|------------------|----------|---------------------------|-------------|--------|---------|-----------|---------|--------------|------------------|---------------|
|        |                  | Japanese |                           |             |        |         |           |         |              |                  |               |
| _      | Area             | Comm,    | Rel.                      |             | Bottom | Rel.    |           | Bottom  | Rel.         |                  | Bottom        |
| Lat.   | Long.            | CPSHF    | density                   | Туре        | area   | density | Туре      | area    | density      | Туре             | area          |
| 48° 30 | 170 <sup>°</sup> |          |                           | -           |        |         | _         | _       | 0 239        | \$2              | 536           |
| 48 30  | 170 30           | * *      |                           | 5           | 272    | · .     | -         | -       | 0.250        | 52               | 1 1 1 7       |
| 48 30  | 170 50           | • •      | 9. <del>5</del> 0<br>1922 |             |        | 0 225   | -         | 175     | 0.251        | SZ               | 1 11/         |
| 48 30  | 171 30           | * *      | 0 037                     | 52          | 1 2 1  | 0.225   | 52<br>SM  | 1/5     | 0.254        | SM               | 1 000         |
| 40 30  | 172              |          | 0.037                     | 52          | 131    | 0.1/0   | SPI       | 437     | 0.252        | 52               | 0/4           |
| 40 30  | 172 30           | ••       | 0.057                     | 52          | 44     | 0,145   | 52        | 000     | 0.245        | 52               | 8/4           |
| 40 50  | 172 50           | ••       |                           | 5           |        | -       | -         |         | 0.237        | 52               | 1 137         |
| 40 30  | 173 30           | ••       |                           | -           |        | 0 227   | -         |         | 0.228        | 52               | 1 443         |
| 40 30  | 175 50           | • •      | -                         | -           |        | 0.227   | 52        | 44      | 0.220        | 52               | 1 224         |
| 40 30  | 174 30           | • •      |                           | -           |        | 0.230   | 52        | 131     | 0.213        | 52               | 8/4           |
| 40 30  | 174 50           |          |                           | ×           | -      | 0.235   | 52        | 44      | 0.206        | SZ               | 1 224         |
| 46 50  | 1/5              | ••       |                           |             | -      |         | -         | -       | 0,200        | S2               | 656           |
| 49     | 100              |          |                           | -           | -      | 0.173   | S2        | 44      | 0.090        | S2               | 438           |
| 49     | 166 30           | 1.07     |                           | -           | -      | 0,169   | S2        | 963     | 0.095        | S2               | 1 051         |
| 49     | 167              | 2.66     | 0.037                     | S2          | 44     | 0.171   | S2        | 253     | 0.103        | S2               | 1 708         |
| 49     | 167 30           | 0.78     | -                         | -           | -      | 0,179   | S2        | 88      | 0.114        | S2               | 1 926         |
| 49     | 168              | ••       | -                         | -           | -      | -       | -         | -       | 0.130        | S2               | 2 014         |
| 49     | 168 30           | • •      | -                         | -           | -      | -       | -         | -       | 0.152        | S2               | 1 576         |
| 49     | 169              |          | -                         | -           | -      | -       | -         | -       | 0.179        | S 2              | 1 489         |
| 49     | 169 30           | ••       | -                         | -           | -      | 0.228   | S2        | 306     | 0.207        | S2               | 1 620         |
| 49     | 170              |          | -                         | -           | -      | 0.235   | S2        | 219     | 0.231        | S2               | 1 620         |
| 49     | 170 30           |          | -                         | -           | -      | 0.250   | S2        | 1 270   | 0,246        | S2               | 744           |
| 49     | 171              | 0.96     | 0.037                     | S2          | 728    | 0.291   | SM        | 1 114   |              | -                | -             |
| 49     | 171 30           |          | 0.037                     | <b>S</b> 2  | 986    | 0.171   | 52        | 86      | 1            | 12               | -             |
| 49     | 172              |          | 0.037                     | <b>S</b> 2  | 471    | 0.023   | SM        | 1 414   | -            | 2                | _             |
| 49     | 172 30           |          | 0.037                     | S2          | 86     | 0 175   | SM        | 1 885   | 0 234        | \$2              | /13           |
| 49     | 173              | 1.13     | -                         | -           | -      | 0.259   | SM        | 1 0 7 1 | 0.226        | \$2              | 43            |
| 49     | 173 30           | 1 03     | _                         | _           | _      | 0.237   | 57        | 1 971   | 0.219        | \$2              | 43            |
| 49     | 174              | 1.05     | _                         | _           | _      | 0.23/   | 52        | 1 3/1   | 0.210        | 52               | 45            |
| 40     | 174 30           | • •      | -                         | -           | -      | 0.234   | 52        | 1 200   | 0.210        | 52               | 2/2           |
| 47     | 174 50           | ••       | -                         | -           | -      | 0.239   | 52        | 1 6/1   | 0.204        | 52               | 343           |
| 47     | 175 20           | • •      | -                         | -           | -      | 0.245   | SZ        | 643     | 0.198        | 52               | 943           |
| 49     | 175 50           | ••       | - 0.07                    | -           | -      | -       | -         | -       | 0.193        | SZ               | 43            |
| 49 30  | 100              | • •      | 0.037                     | 52          | 257    | 0.158   | SZ        | 600     | 0.082        | 52               | 214           |
| 49 30  | 100 30           | • •      | 0.037                     | S2          | 343    | 0.148   | S2        | 300     | -            |                  | -             |
| 49 30  | 167              |          | 0.037                     | S2          | 857    | 0.148   | S2        | 771     | ( <b>#</b> 5 | 0.00             | S <b>H</b> () |
| 49 30  | 16/ 30           |          | 0.037                     | S2          | 171    | 0.162   | S2        | 1 414   | 0,104        | S2               | 214           |
| 49 30  | 168              |          | -                         | -           | -      | 0.181   | S2        | 857     | 0.118        | S2               | 1 157         |
| 49 30  | 168 30           |          | -                         | -           | -      | 0.202   | S2        | 86      | 0.137        | S2               | 1 928         |
| 49 30  | 169              |          | -                         | -           | -      | -       | -         | -       | 0.163        | S2               | 2 014         |
| 49 30  | 169 30           |          | 2 - C                     | 1           | -      | 0.230   | S2        | 643     | 0.191        | S2               | 1 371         |
| 49 30  | 170              | • •      | -                         | -           | -      | 0.237   | S2        | 857     | 0.216        | S2               | 1 157         |
| 49 30  | 170 30           | ••       | -                         | -           | -      | 0.242   | S2        | 2 014   | -            | 1. <del></del> . |               |
| 49 30  | 171              | • •      | 0.037                     | S2          | 43     | 0.240   | S2        | 1 971   | -            |                  |               |
| 49 30  | 171 30           | • •      | 0.037                     | S2          | 171    | 0.191   | S2        | 1 843   | 3 <b>1</b> 0 | 3 <b>4</b>       | -             |
| 49 30  | 172              | 1.46     | 0.037                     | S2          | 129    | 0.150   | S2        | 1 885   | -            | -                | -             |
| 49 30  | 172 30           |          | 0,037                     | S2          | 343    | 0,186   | S2        | 1 671   | -            | -                | -             |
| 49 30  | 173              |          | -                         | -           | -      | 0,224   | \$2       | 2 014   | -            |                  |               |
| 49 30  | 173 30           |          | -                         | -           |        | 0,234   | S2        | 1 500   | 0,213        | S2               | 386           |
| 49 30  | 174              | 0.73     |                           | 11 <u>2</u> |        | 0,240   | S2        | 1 585   | 0.207        | S2               | 429           |
|        |                  |          |                           |             |        |         |           |         |              |                  |               |

#### Campbell Plateau (Area 3W), January 1976 (cont.)

|         |                      |          |              | 200-400 m    |          |         | 400-600 m |         |          | 600-800 m   |         |
|---------|----------------------|----------|--------------|--------------|----------|---------|-----------|---------|----------|-------------|---------|
|         | Aroa                 | Japanese | Pol          |              | Pottor   | Pol     |           | Pottom  | Pol      |             | Bottom  |
| Lat.    | Long.                | CPSHF    | density      | Туре         | area     | density | Type      | area    | density  | Туре        | area    |
| 49° 30' | 174 <sup>°</sup> 30' |          | 2            | -            | ÷        | 0.246   | S2        | 1 114   | 0.201    | S2          | 686     |
| 49 30   | 175                  |          | -            |              | -        | 0.252   | S2        | 86      | 0.195    | S2          | 1 114   |
| 50      | 165 30               |          | 0.037        | S2           | 41       | 0.162   | S2        | 41      | 0.072    | S2          | 41      |
| 50      | 166                  |          | 0.037        | S2           | 164      | 0.143   | S2        | 164     | 0.075    | S2          | 82      |
| 50      | 167 30               |          | 0.037        | S2           | 904      | 0.151   | S2        | 493     | -        |             | 1       |
| 50      | 168                  |          | -            | -            | -        | 0.173   | S2        | 1 973   | -        | -           | -       |
| 50      | 168 30               |          | -            | -            | -        | 0.197   | S2        | 1 850   | 0,123    | S2          | 123     |
| 50      | 169                  |          | <u>-</u>     | 520          | -        | 0.219   | S2        | 1 315   | 0.146    | S2          | 658     |
| 50      | 169 30               | 0        | <u>i</u>     | -            | <u> </u> | 0.233   | S2        | 82      | 0.171    | S2          | 1 891   |
| 50      | 170                  |          | -            | -            | =        | 0.241   | S2        | 336     | 0.196    | S2          | 1 637   |
| 50      | 170 30               |          | -            |              | ÷.       | 0.243   | S2        | 1 427   | 0.213    | S2          | 546     |
| 50      | 171                  |          | 2            | 3 <b>4</b> 3 | <u></u>  | 0.239   | S2        | 1 973   | -        | -           | 2       |
| 50      | 171 30               |          | <u>_</u>     | -            | <u></u>  | 0.225   | S2        | 1 973   | <u> </u> | -           | 2       |
| 50      | 172                  |          | -            | -            | -        | 0.214   | S2        | 1 973   |          | -           | -       |
| 50      | 172 30               |          | -            | -            | -        | 0.219   | S2        | 1 973   | -        |             | -       |
| 50      | 173                  |          |              |              | -        | 0.232   | S2        | 1 931   | 0.212    | S2          | 42      |
| 50      | 173 30               |          |              | -            | -        | 0.243   | S2        | 378     | 0.207    | S2          | 1 469   |
| 50      | 174                  |          | -            | -            | -        | 0.251   | S2        | 84      | 0.201    | S2          | 966     |
| 50 30   | 165 30               |          | 0.037        | S2           | 493      | 0.160   | S2        | 206     | 0.065    | 52          | 123     |
| 50 30   | 166                  |          | 0.037        | S2           | 123      | 0.137   | S2        | 49      | -        | -           |         |
| 50 30   | 166 30               |          | 0.037        | SM           | 247      | 0.102   | 52        | 247     |          | -           | -       |
| 50 30   | 167                  |          | 0.037        | 52           | 123      | 0.063   | SM        | 1 233   |          |             |         |
| 50 30   | 167 30               | 3 02     | 0.037        | \$2          | 288      | 0 177   | SM        | 1 685   |          | _           |         |
| 50 30   | 168                  | 2.02     | -            | -            | 200      | 0 172   | 52        | 1 973   |          | -           |         |
| 50 30   | 168 30               |          | 0 037        | \$2          | 41       | 0 198   | \$2       | 1 032   | _        | _           |         |
| 50 30   | 169                  | 0        | 0.037        | 52           | 41       | 0 223   | 52        | 1 032   | _        | 100         | 5       |
| 50 30   | 169 30               | 2 00     | 0.037        | \$2          | 164      | 0.225   | 52        | 1 900   |          |             | -       |
| 50 30   | 170                  | 2.07     | 0.037        | 52           | 104      | 0.250   | 52        | 1 3 9 5 | 0 174    | -<br>-      | =       |
| 50 30   | 170 30               | * *      | -            | -            | -        | 0.247   | 52        | 1 505   | 0.1/4    | 52          | 200     |
| 50 30   | 170 50               | • •      | -            | -            | -        | 0.252   | 52        | 1 070   | 0.191    | 52          | 3/6     |
| 50 30   | 171 20               | •3•      | -            |              |          | 0.254   | 32        | 1 973   | -        |             | -       |
| 50 30   | 171 50               | • •      | -            | -            |          | 0.254   | 52        | 1 973   | -        | -           | -       |
| 50 30   | 172 20               | •••      | -            | -            | <b>.</b> | 0.253   | 52        | 1 9/3   | 0 00(    | -           | -       |
| 50 30   | 1/2 50               | • •      | -            | -            |          | 0.250   | 52        | 1 931   | 0.206    | SZ          | 42      |
| 50 30   | 173 20               | • •      |              | -            | -        | 0.261   | SZ        | 1 805   | 0.203    | S2          | 168     |
| 50 50   | 1/5 30               | */*      | -            | -            | -        | 0.267   | SZ        | 126     | 0.199    | S2          | 1 133   |
| 51      | 165 30               |          | 0.037        | SZ           | 348      | 0.165   | SZ        | 464     | 0.056    | 52          | 155     |
| 51      | 166 00               | • •      | 0.03/        | 52           | 309      | 0.146   | S2        | 1 121   | 0.055    | S2          | 155     |
| 51      | 166 30               | • •      | -            | -            | -        | 0.123   | S2        | 1 275   | 0.074    | S 2         | 618     |
| 51      | 167                  | • •      | -            | -            | -        | 0.117   | S2        | 1 160   | 0.094    | S2          | 773     |
| 51      | 167 30               | • •      | -            | -            |          | 0.153   | S2        | 1 391   | 0,096    | S2          | 541     |
| 51      | 168                  | • •      | -            | -            | -        | 0,177   | S2        | 1 121   | 0,098    | S2          | 811     |
| 51      | 168 30               |          | -            | -            | -        | 0.205   | S2        | 1 932   | -        | ( <b></b> ) | -       |
| 51      | 169                  |          | -            | -            | -        | 0.228   | S2        | 1 932   | -        | -           | 8       |
| 51      | 169 30               |          | -            | -            | 2        | 0.242   | S2        | 1 932   | -        |             |         |
| 51      | 170                  |          | -            | -            | -        | 0.252   | S2        | 1 932   | 300      |             | -       |
| 51      | 170 30               |          | -            | -            | -        | 0.259   | S2        | 1 932   | 94 C     | -           | <u></u> |
| 51      | 171                  | • •      | ( <b>1</b> ) | -            |          | 0.265   | S2        | 1 932   | -        | -           | 7       |
| 51      | 171 30               |          |              | -            | -        | 0.270   | S2        | 1 932   | -        | 0 <b>#</b>  | -       |

#### Campbell Plateau (Area 3W), January 1976 (cont.)

| Area         Comm.<br>Comm.         Ref.<br>Comm.         Bottom<br>density         Type         area         density         Type         Bottom<br>density         Type         Ref.<br>density         Bottom<br>Type           11         172         10         -         -         -         0.297         52         1 932         -         -         -           51         172         30         -         -         -         0.289         52         1 932         -         -         -           51         173         0         -         -         -         0.289         52         1 933         63         0.193         52         7.99           51         0.166         -         -         -         -         0.155         52         0.373         52         1 80           51         30         167         0.51         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<         |            |        |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200-400 m |                  |         | 400-600 m |        |                  | 600-800 m   |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|---------|-----------|--------|------------------|-------------|--------------|
| Area         Comm.         Rel.         Bottom         Rel.         Bottom         Rel.         Bottom         Rel.         Bottom           11         172         0         -         -         0.299         52         1 932         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         0.190         52         1 833         0.193         S2         1 833         0.193         S2         1 833         0.186         S2         1 180         0.156         -         -         0.0466         S8         79         0.155         0.053         S2         1 932         1 64         -         -         -         -         0.0155         52         2237         0.0978         S2         1 1 932         1 932         1 932         1 932         1 933         1 64         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |            |        | Japanese            | 100 C 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                  |         |           |        | 100.01           |             |              |
| Lat. Long. CPSNR density Type area $11^{9}$ 172 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b> . | Area   | Comm.               | Rel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | Bottom           | Rel.    | _         | Bottom | Rel.             | 1222        | Bottom       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lat.       | Long.  | CPSHF               | density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type      | area             | density | Туре      | area   | density          | Type        | area         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 510        | 1720   |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2         |                  | 0 279   | 52        | 1 932  | 1                | 2           | _            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51         | 172 30 | ••                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 372              | 0,277   | 62        | 1 022  | 1.0              |             | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51         | 172 50 | 2.4.50<br>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 1.0 <b>.</b>     | 0.207   | 52        | 1 952  | 0 102            | 52          | 7.0          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51         | 173 30 |                     | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 5 <b></b><br>567 | 0,275   | 52        | 1 005  | 0.195            | 52          | 2 002        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51         | 175 50 | ••                  | 5 <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -         |                  | -       |           |        | 0.190            | 52          | 1 093        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 20      | 1/4    | S <b>*</b> 3*3      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                  | -       | 5         |        | 0.100            | 52          | 1 104        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 166 20 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15        | 2004             | -       | -         | -      | 0.046            | 50          | 19           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 100 30 | 0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 2 <b></b>        | 0.154   | SZ        | 333    | 0.073            | 52          | 807          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 167 20 | 0.51                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.155   | SZ        | 237    | 0.103            | SM          | 1 656        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 107 30 | ••                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | 1                | - 100   |           | -      | 0.098            | 52          | 1 932        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 30      | 100    | (•.•)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -         | -                | 0.193   | SZ        | 552    | 0.097            | S2          | 1 380        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 168 30 |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SZ        | /89              | 0.216   | SZ        | 1 143  |                  | ÷.          | -            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 169    | ••                  | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 1 498            | 0.233   | S2        | 276    | -                | -           | -            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 169 30 |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 1 222            | 0.243   | S2        | 710    |                  | -           | ٠            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 30      | 170    | 3•3•3               | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 513              | 0,249   | S2        | 1 380  | 3 <b>.</b>       | <del></del> |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 30      | 170 30 | au/ <sup>3836</sup> | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.266   | SM        | 1 932  | : <del>*</del> : | *           |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 30      | 171    | 0                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.276   | SM        | 1 932  | 2 <b>4</b> 4     | -           | -            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 1/1 30 | 0.22                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.279   | S2        | 1 932  |                  |             | -            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 172    | • •                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5         | -                | 0.304   | S2        | 1 932  |                  | =           | : <b>.</b>   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 172 30 |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>z</b>  | -                | 0.326   | S2        | 1 695  | 0.182            | S2          | 237          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 173    | ••                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.332   | S2        | 828    | 0.182            | S2          | 1 064        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 173 30 |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                |         | -         | -      | 0.182            | S2          | 1 263        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 174    | 3.0.0               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -                |         | .≂        | -      | 0.181            | S2          | 1 025        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51 30      | 174 30 | 2010                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | 3 🖷              | -       | -         |        | 0.179            | S2          | 158          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 167    | ••                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | -       | -         | -      | 0.093            | S2          | 227          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 167 30 |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8         | -                | -       | -         |        | 0.095            | S2          | 907          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 168    |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 113              | 0.210   | S2        | 302    | 0.095            | S2          | 1 398        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 168 30 |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 831              | 0,225   | S2        | 76     |                  | -           | 5 <b>.</b>   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 169    | * =                 | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 113              | -       | -         | -      |                  | -           | -            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 169 30 | 1.58                | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 151              | -       | -         | -      | -                | -           | →            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52         | 170    | 1.32                | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 1 133            | 0.236   | S2        | 340    |                  | -           | -            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 170 30 | 1.11                | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 76               | 0,196   | SM        | 1 813  |                  | -           |              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 171    | 1.49                | 1944 - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>_</u>  | 9 <b>2</b> 0     | 0.285   | SM        | 1 889  | -                | -           | 1            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 171 30 | * *                 | 1 ( ja 1 )))))))))))))))))))))))))))))))))) | 2         | -                | 0.288   | S2        | 1 587  | 0.162            | S2          | 302          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 172    | ••                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                  | 0.348   | S2        | 1 511  | 0.167            | S2          | 378          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 172 30 | 12.53               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -         |                  | 0.381   | S2        | 756    | 0.171            | S2          | 1 133        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52         | 173    | 0                   | 2 <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -         | 8 <b>2</b> 5     | 0.371   | S2        | 227    | 0.173            | S2          | 1 209        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52 30      | 168    |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 38               | 0.221   | S2        | 227    | 0.094            | S2          | 1 360        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52 30      | 168 30 | 2.44                | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 680              | 0.231   | S2        | 680    | 0.098            | S2          | 302          |
| 52       30       169       30       2.72       0.037       52       76       0.238       52       38       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                           | 52 30      | 169    | 2.66                | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 491              | 0.237   | S2        | 38     | -                | _           | -            |
| 52       30       170        0.037       S2       529       0.235       S2       1 247       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <td>52 30</td> <td>169 30</td> <td>2 - 72</td> <td>0.037</td> <td>S2</td> <td>76</td> <td>0.238</td> <td>52</td> <td>38</td> <td>_</td> <td>_</td> <td>-</td>                    | 52 30      | 169 30 | 2 - 72              | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 76               | 0.238   | 52        | 38     | _                | _           | -            |
| 52       30       170       30       -       -       -       0.234       SM       1       889       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                           | 52 30      | 170    |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52        | 529              | 0.235   | S2        | 1 247  | 12               | _           | -            |
| 52       30       171        0.037       S2       76       0.267       SM       1 813       -       -       -         52       30       171       30        0.037       S2       113       0.291       S2       1 776       -       -       -       -         52       30       172        0.037       S2       302       0.436       SM       1 511       0.157       S2       76         52       30       172        0.037       S2       302       0.436       SM       1 511       0.157       S2       76         52       30       172        0.037       S2       302       0.469       SM       1 813       0.162       S2       76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52 30      | 170 30 |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.234   | SM        | 1 889  | -                | _           | -            |
| 52       30       171       30        0.037       S2       113       0.291       S2       1       76       -       -       -         52       30       172        0.037       S2       302       0.436       SM       1       511       0.157       S2       76         52       30       172        0.037       S2       302       0.436       SM       1       511       0.157       S2       76         52       30       172        0.037       S2       302       0.436       SM       1       813       0.162       S2       76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52 30      | 171    | • •                 | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2        | 76               | 0.267   | SM        | 1 813  |                  | -           | -            |
| 52 30 172 . 0.037 S2 302 0.436 SM 1.511 0.157 S2 76<br>52 30 172 30 2.00 0.469 SM 1.813 0.162 S2 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 30      | 171 30 | • •                 | 0,037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52        | 113              | 0,291   | 52        | 1 776  | -                | -           | 3 <b>4</b> 3 |
| 52 30 172 30 2.00 0.469 SM 1.813 0.162 S2 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52 30      | 172    |                     | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52        | 302              | 0.436   | SM        | 1 511  | 0.157            | S2          | 76           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 30      | 172 30 | 2 00                | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54        | 502              | 0.469   | SM        | 1 813  | 0 162            | 52          | 76           |
| 52 30 173 2 54 O 365 SM 1 473 O 164 S2 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52 30      | 173    | 2.00                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | (125)            | 0 365   | SM        | 1 473  | 0 164            | \$2         | 378          |
| 52 30 173 30 0.379 S2 38 0.166 S2 254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52 30      | 173 30 | 20J7                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         | -                | 0.379   | S2        | 38     | 0.166            | S2          | 254          |

| Campbell | Plateau | (Area | 3W), | January | 1976 | (cont.) |
|----------|---------|-------|------|---------|------|---------|

|         |        |      |    |          |                                          | 200-400 m   |                                         |                                                                                                                 | 400-600 m |              |         | 600-800 m |        |
|---------|--------|------|----|----------|------------------------------------------|-------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------------|---------|-----------|--------|
|         |        |      |    | Japanese | D.e.1                                    |             | Pottom                                  | P a 1                                                                                                           |           | Pottom       | Pal     |           | Bottom |
| Garage. | as - 1 | Area |    | Conan.   | nel.                                     | 344 0000000 | DOCCOM                                  | her.                                                                                                            | 100000000 | DOLLOM       | ner.    | M10.20    | BOCCOM |
| La      | Ę.     | Lon  | g. | CPSHr    | density                                  | type        | area                                    | density                                                                                                         | Type      | area         | density | type      | area   |
| 53°     |        | 1680 | e. |          | -                                        | 5 <b>.</b>  | <b>2</b> 0                              | -                                                                                                               | -         |              | 0.093   | S2        | 355    |
| 53      |        | 168  | 30 | •••      |                                          | 14          | -                                       | 0.234                                                                                                           | \$2       | 142          | 0.097   | \$2       | 1 562  |
| 53      |        | 169  |    | • •      | 0.037                                    | S2          | 497                                     | 0.238                                                                                                           | S2        | 923          | 0.104   | S2        | 355    |
| 53      |        | 169  | 30 |          | 0.037                                    | S2          | 710                                     | 0.237                                                                                                           | S2        | 284          | 0.111   | S2        | 604    |
| 53      |        | 170  |    |          | 0.037                                    | S2          | 497                                     | 0.231                                                                                                           | S2        | 817          | 0.120   | S2        | 462    |
| 53      |        | 170  | 30 |          |                                          | -           | 1 A A A A A A A A A A A A A A A A A A A | 0.207                                                                                                           | \$2       | 1 775        | 0.129   | S2        | 71     |
| 53      |        | 171  |    | • •      | 0.037                                    | \$2         | 142                                     | 0.063                                                                                                           | SM        | 1 633        | 0.137   | \$2       | 71     |
| 53      |        | 171  | 30 |          | 0.037                                    | S2          | 355                                     | 0.253                                                                                                           | S2        | 1 136        | 0.144   | S2        | 355    |
| 53      |        | 172  |    |          | 0.037                                    | S2          | 107                                     | 0.296                                                                                                           | SM        | 1 349        | 0.149   | S2        | 391    |
| 53      |        | 172  | 30 | 1.06     |                                          |             | · · · ·                                 | 0.388                                                                                                           | \$2       | 1 278        | 0.154   | S2        | 462    |
| 53      |        | 173  |    |          | -                                        | -           | -                                       | 0.679                                                                                                           | SM        | 355          | 0.157   | S2        | 1 030  |
| 53      |        | 173  | 30 |          | 3 <b>7</b> 3                             | 1.55        | -                                       |                                                                                                                 | 353       | -            | 0.159   | S2        | 178    |
| 53      | 30     | 168  | 30 | 22       | 3 <b>9</b> 00                            |             |                                         | 19 C                                                                                                            | -         | 98 C         | 0.097   | 52        | 801    |
| 53      | 30     | 169  |    |          | 14 A A A A A A A A A A A A A A A A A A A | -           | <b>a</b> 1                              | 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - | 2.5       | <b>2</b> 1   | 0.103   | S2        | 871    |
| 53      | 30     | 169  | 30 | • •      |                                          |             | 3                                       | -                                                                                                               | -         | -            | 0.110   | S2        | 592    |
| 53      | 30     | 170  |    | 200      |                                          | 2.55        | -                                       | -                                                                                                               |           |              | 0.117   | S2        | 488    |
| 53      | 30     | 170  | 30 |          | -                                        | -           | ( <b>a</b> )                            | 0.213                                                                                                           | S2        | 139          | 0.124   | S2        | 348    |
| 53      | 30     | 171  |    |          | -                                        | 24          | 2 C                                     | 0.194                                                                                                           | S2        | 35           | 0.131   | S2        | 906    |
| 53      | 30     | 171  | 30 |          | -                                        | -           | ÷,                                      | 0.253                                                                                                           | S2        | 70           | 0.138   | S2        | 1 045  |
| 53      | 30     | 172  |    | **       |                                          | -           | -                                       | 0,308                                                                                                           | S2        | 35           | 0.143   | S2        | 488    |
| 53      | 30     | 172  | 30 |          | 9 <b>4</b> .0                            | -           | ( <b>H</b> )                            | -                                                                                                               | -         | <b>14</b> 31 | 0.148   | S2        | 70     |

#### Campbell Plateau (Area 3W), December 1976-January 1977

|        |                  |                   |                   | 200-400 m    |                 |         | 400-600 m    |          |              | 600-800 m |         |
|--------|------------------|-------------------|-------------------|--------------|-----------------|---------|--------------|----------|--------------|-----------|---------|
|        | Area             | Japanese<br>Comm. | Rel.              | _            | Bottom          | Rel.    | _            | Bottom   | Rel.         | _         | Bottom  |
| Lat.   | Long.            | CPSHF             | density           | Туре         | area            | density | Type         | area     | density      | Type      | area    |
| 48° 30 | 170 <sup>0</sup> |                   | 2                 | -            | -               | _       | -            | -        | 0.125        | S2        | 536     |
| 48 30  | 170 30           |                   |                   |              | _               | -       |              | _        | 0 116        | 52        | 1 117   |
| 48 30  | 171              |                   |                   | 47.5         | _               | 0 2/8   | \$2          | 175      | 0.104        | 52        | 1 006   |
| 40 30  | 171 30           | **                | 0 488             | \$2          | 131             | 0.226   | \$2          | 437      | 0.093        | \$2       | 874     |
| 48 30  | 172              | ••                | 0,486             | \$2          | 44              | 0.103   | \$2          | 457      | 0.085        | \$2       | 874     |
| 40 30  | 172 30           | • • •             | 0.400             | 52           | 44              | 0.175   | 52           | 010      | 0.000        | SM        | 1 1 3 7 |
| 40 30  | 172 00           | 0                 | -                 | -            | -               | -       | -            |          | 0.002        | 57        | 1 4 4 3 |
| 40 30  | 172 20           | **                | -                 | -            |                 | 0.254   | <b>-</b>     |          | 0.005        | 52        | 1 22/   |
| 40 30  | 1/5 50           |                   | -                 | -            | -               | 0.254   | 52           | 44       | 0.084        | 52        | 1 2 2 4 |
| 40 30  | 174              | ••                | -                 |              |                 | 0.360   | 52           | 131      | 0.079        | 52        | 1 224   |
| 45 30  | 174 30           | **                | -                 | -            | 2               | 0.372   | 52           | 44       | 0.070        | 52        | 1 224   |
| 48 30  | 1/5              |                   | -                 | -            | 5               |         | _            | -        | 0.065        | SZ        | 656     |
| 49     | 100              | ••                | 3 <del>9</del> 1) | -            |                 | 0.258   | SZ           | 44       | 0.141        | SZ        | 438     |
| 49     | 166 30           |                   |                   |              | -               | 0.246   | S2           | 963      | 0.136        | S2        | 1 051   |
| 49     | 167              |                   | 0.321             | S2           | 44              | 0.235   | S2           | 253      | 0.127        | S2        | 1 708   |
| 49     | 167 30           |                   | 5. L              | -            | 155             | 0.231   | S2           | 88       | 0.121        | SM        | 1 926   |
| 49     | 168              |                   | -                 | -            | =               | (B)     | -            | Ξ.,      | 0.128        | S2        | 2 014   |
| 49     | 168 30           |                   | -                 | -            | ÷.              | -       | 3 <b>-</b> 5 | -1       | 0,137        | S2        | 1 576   |
| 49     | 169              |                   | -                 | -            |                 | -       | -            | <u> </u> | 0.140        | S2        | 1 489   |
| 49     | 169 30           |                   | -                 |              |                 | 0.258   | S2           | 306      | 0.137        | S2        | 1 620   |
| 49     | 170              |                   | -                 | :#3          | =               | 0.264   | S2           | 219      | 0.129        | S2        | 1 620   |
| 49     | 170 30           |                   | -                 | -            | -               | 0.263   | S2           | 1 270    | 0.119        | S2        | 744     |
| 49     | 171              | ••                | 0.497             | S2           | 728             | 0.253   | S2           | 1 114    | -            | -         | -       |
| 49     | 171 30           |                   | 0.494             | S2           | 986             | 0.228   | S2           | 86       | -            | -         | -       |
| 49     | 172              |                   | 0.492             | S2           | 471             | 0.178   | S2           | 1 414    | -            | -         | -       |
| 49     | 172 30           |                   | 0.489             | S2           | 86              | 0.124   | SM           | 1 885    | 0.084        | S2        | 43      |
| 49     | 173              | 256               | -                 | -            | 2               | 0.119   | SM           | 1 971    | 0.085        | S2        | 43      |
| 49     | 173 30           |                   | _                 | -            | -               | 0.245   | S2           | 1 971    | 0.085        | S2        | 43      |
| 49     | 174              |                   | -                 | -            |                 | 0.506   | SM           | 1 200    | 0.078        | \$2       | 771     |
| 49     | 174 30           |                   |                   | 2 <b>2</b> 2 | 2               | 0.403   | SM           | 1 671    | 0.066        | 52        | 343     |
| 49     | 175              | 2.0               | -                 | _            | -               | 0 371   | \$2          | 643      | 0.060        | SM        | 943     |
| 49     | 175 30           | ••                | _                 | _            | 2               | 0.0/1   | -            | -        | 0.064        | \$2       | 43      |
| / 0 30 | 166              | ••                | 0 2/2             | c2           | 257             | 0 263   | c 2          | 600      | 0.146        | 52        | 214     |
| //0 30 | 166 30           |                   | 0.242             | 52           | 2.57            | 0.203   | 52           | 300      | 0.140        | 52        | 214     |
| 49 30  | 167              |                   | 0.245             | 52           | 245             | 0.243   | 52           | 500      |              | -         |         |
| 47 30  | 167 20           | ×:•               | 0.200             | 52           | 171             | 0.221   | 52           | 1 4 1 4  | 0 1 2 2      | c 2       | 214     |
| 47 30  | 167 50           | ••                | 0.331             | 52           | 1/1             | 0.215   | 32           | 1 414    | 0,152        | 52        | 1 157   |
| 49 30  | 168 20           |                   | -                 | -            |                 | 0.224   | 52           | 1 CO     | 0.140        | 52        | 1 137   |
| 49 30  | 108 30           |                   | -                 | -            | -               | 0.231   | 52           | 86       | 0.149        | SZ        | 1 928   |
| 49 30  | 169              |                   | -                 | -            |                 | -       | -            |          | 0.149        | 52        | 2 014   |
| 49 30  | 169 30           | • •               | -                 | -            |                 | 0.258   | SZ           | 643      | 0.143        | SZ        | 1 3/1   |
| 49 30  | 170              | ••                | -                 | -            | -               | 0.268   | S2           | 857      | 0.134        | S2        | 1 157   |
| 49 30  | 170 30           |                   | -                 | -            | -               | 0.271   | S2           | 2 014    | -            | -         | -       |
| 49 30  | 171              | **                | 0.505             | S2           | 43              | 0,267   | SZ           | 1 971    | -            | -         | -       |
| 49 30  | 171 30           | <b>X</b>          | 0.501             | S2           | 171             | 0.248   | S2           | 1 843    | <b>#</b> 1/1 | -         | -       |
| 49 30  | 172              |                   | 0.496             | S2           | 129             | 0,210   | S2           | 1 885    | -            | -         | -       |
| 49 30  | 172 30           |                   | 0.492             | S2           | 343             | 0.167   | S2           | 1 671    | 9 <b>9</b> 3 | -         | -       |
| 49 30  | 173              |                   | -                 | -            | -               | 0.121   | SM           | 2 014    | -            | -         | -       |
| 49 30  | 173 30           |                   | -                 | -            | -               | 0,216   | S2           | 1 500    | 0.087        | S2        | 386     |
| 49 30  | 174              |                   | -                 | -            | 1990).<br>1990) | 0.344   | S2           | 1 585    | 0.080        | S2        | 429     |

Campbell Plateau (Area 3W), December 1976-January 1977 (cont.)

|                      |          |                 |                | 200-400 m  |               |         | 400-600 m |         |            | 600-800 m |                |
|----------------------|----------|-----------------|----------------|------------|---------------|---------|-----------|---------|------------|-----------|----------------|
|                      |          | Japanese        |                |            |               |         |           |         |            |           |                |
|                      | Area     | Comm.           | Rel.           |            | Bottom        | Rel.    |           | Bottom  | Rel.       |           | Bottom         |
| Lat.                 | Long.    | CPSHF           | density        | Туре       | area          | density | Type      | area    | density    | Туре      | area           |
| 40 <sup>0</sup> 30 " | 1740 301 |                 | _              | _          | 1423          | 0 366   | \$2       | 1 114   | 0.070      | S2        | 686            |
| 49 30                | 174      |                 |                | _          |               | 0.352   | S2        | 86      | 0.065      | S2        | 1 114          |
| 49 50                | 165 30   |                 | 0 212          | 52         | 41            | 0.296   | 52        | 41      | 0.151      | S 2       | 41             |
| 50                   | 166      |                 | 0.212          | \$2        | 164           | 0.283   | 52        | 164     | 0.154      | 52        | 82             |
| 50                   | 167 30   |                 | 0.345          | 52         | 904           | 0 181   | 52        | 493     | (a)        |           |                |
| 50                   | 167 50   | 2.5.4           | 0.040          | 02         | 504           | 0 231   | SM        | 1 973   | 2          | 2         | ÷              |
| 50                   | 168 30   |                 |                |            |               | 0.224   | 52        | 1 850   | 0 171      | \$2       | 123            |
| 50                   | 160 50   | * t             |                | -          | 1744          | 0.241   | S2        | 1 315   | 0.161      | 52        | 658            |
| 50                   | 169 30   |                 |                |            | 127           | 0.259   | 52        | 82      | 0 149      | 52        | 1 891          |
| 50                   | 170      |                 |                |            |               | 0.273   | \$2       | 336     | 0 137      | 52        | 1 637          |
| 50                   | 170 20   |                 | 275            | 8          |               | 0.275   | 52        | 1 4 2 7 | 0 127      | 52        | 5/16           |
| 50                   | 170 30   |                 | 9 <b>8</b> 5   | -          | 2 <b>2</b> .  | 0.280   | 52        | 1 973   | 0.127      | 52        | 040            |
| 50                   | 1/1      |                 |                | -          |               | 0 279   | 52        | 1 973   | -          |           |                |
| 50                   | 1/1 30   | 20.0            |                | 5          | -             | 0.270   | 52        | 1 9/5   | -          | -         | -              |
| 50                   | 172 20   |                 |                | <b>T</b> . |               | 0.239   | 52        | 1 975   |            | 5         |                |
| 50                   | 172 30   | ••              |                |            |               | 0.225   | 52        | 1 0 2 1 | 0.004      | 52        |                |
| 50                   | 1/3      | 100 M           |                | -          | -             | 0.199   | 52        | 1 931   | 0.094      | 52        | 44             |
| 50                   | 1/3 30   |                 | •              |            |               | 0.230   | 52        | 2/0     | 0.090      | 52        | 1 409          |
| -50                  | 1/4      |                 |                |            | -             | 0.292   | 52        | 84      | 0.005      | 52        | 900            |
| 50 30                | 165 30   |                 | 0.168          | SZ         | 493           | 0.335   | SZ        | 206     | 0.155      | 52        | 123            |
| 50 30                | 166      |                 | 0.180          | S2         | 123           | 0.341   | SZ        | 49      | -          | -         | -              |
| 50 30                | 166 30   |                 | 0,156          | SM         | 247           | 0.270   | SZ        | 247     | -          | -         | -              |
| 50 30                | 167      |                 | 0.221          | S2         | 123           | 0,181   | SZ        | I 233   |            | <i></i>   | (T)            |
| 50 30                | 167 30   |                 | 0.3/1          | S2         | 288           | 0.066   | SM        | 1 685   | -          | -         | 2 <b>•</b> • 1 |
| 50 -30               | 168      | 2.5             | -              | -          | -             | 0.1/8   | S2        | 1 9/3   | -          |           | -              |
| 50 30                | 168 30   |                 | 0.557          | S2         | 41            | 0.210   | S2        | 1 932   | -          |           | -              |
| 50 30                | 169      | Second.         | 0.572          | S2         | 41            | 0.237   | S 2       | 1 932   | -          | -         |                |
| 50 30                | 169 30   |                 | 0.564          | S 2        | 164           | 0.261   | S2        | 1 809   | -          | -         |                |
| 50 30                | 170      | 25.5.V          | -              | -          |               | 0.276   | S2        | 1 385   | 0.139      | S2        | 588            |
| 50 30                | 170 30   | 10.00           | -              | ₹.         | -             | 0.286   | S2        | 1 595   | 0,128      | S 2       | 378            |
| 50 30                | 171      | 2010            | 3 <b>7</b> 2   | ≂          | 3 <b>7</b> 3  | 0.299   | S2        | 1 973   | -          | -         |                |
| 50 30                | 171 30   |                 | -              | -          | 3 <b>9</b>    | 0.307   | S2        | 1 973   | -          | -         | -              |
| 50 30                | 172      |                 | -              | <u>~</u>   |               | 0.303   | S2        | 1 973   | 3 <b>4</b> | -         |                |
| 50 30                | 172 30   |                 | -              | -          | -             | 0.287   | S2        | 1 931   | 0.101      | S 2       | 42             |
| 50 30                | 173      |                 | -              | -0         | .e:           | 0.273   | S2        | 1 805   | 0.098      | S 2       | 168            |
| 50 30                | 173 30   |                 | 3 <del>0</del> | -          | 3 <b>9</b> 0  | 0.278   | S2        | 126     | 0,095      | S2        | 1 133          |
| 51                   | 165 30   |                 | 0.125          | S2         | 348           | 0.370   | S2        | 464     | 0.156      | S2        | 155            |
| 51                   | 166      | 5 <b>* 5*</b> 5 | 0,180          | S2         | 309           | 0.456   | SM        | 1 121   | 0.162      | S2        | 155            |
| 51                   | 166 30   |                 |                | -          | 237           | 0.253   | SM        | 1 275   | 0,170      | S 2       | 618            |
| 51                   | 167      |                 | -              | -          | 3 <b>3</b> 6  | 0.223   | S2        | 1 160   | 0.181      | S2        | 773            |
| 51                   | 167 30   | ••              | 1000           | -          | 12            | 0.168   | S2        | 1 391   | 0.203      | S2        | 541            |
| 51                   | 168      |                 | -              | -          | -             | 0.149   | SM        | 1 121   | 0.326      | SM        | 811            |
| 51                   | 168 30   | ••              | -              | -          | -             | 0.191   | S2        | 1 932   | -          | -         | -              |
| 51                   | 169      |                 | -              | -          |               | 0.231   | S2        | 1 932   | 24         | -         |                |
| 51                   | 169 30   | 3570            | -              | -          |               | 0.264   | S2        | 1 932   | (iii)      | 8         | -              |
| 51                   | 170      |                 | -              | -          |               | 0.274   | S2        | 1 932   | -          | -         |                |
| 51                   | 170 30   |                 | -              | -          |               | 0.275   | S2        | 1 932   | 1.00       | -         |                |
| 51                   | 171      |                 | -              | -          | (e)           | 0.305   | S2        | 1 932   | -          | -         | 200            |
| 51                   | 171 30   |                 | -              | -          | 22 <b>4</b> 0 | 0.342   | S2        | 1 932   |            | -         | -              |

#### Campbell Plateau (Area 3W), December 1976-January 1977 (cont.)

|       |        |          |         | 200-400 m |               |             | 400-600 m |         |         | 600-800 m |         |
|-------|--------|----------|---------|-----------|---------------|-------------|-----------|---------|---------|-----------|---------|
|       |        | Japanese |         |           |               |             |           |         |         |           |         |
|       | Area   | Comm.    | Rel.    |           | Bottom        | Rel.        |           | Bottom  | Rel.    |           | Bottom  |
| Lat.  | Long.  | CPSHF    | density | Туре      | area          | densi ty    | Туре      | area    | density | Туре      | атеа    |
| 510   | 1720   |          | _       | _         | -             | 0 210       | SM        | 1 0 2 2 |         | 5         |         |
| 51    | 172 30 |          | _       | _         | _             | 0.319       | 57        | 1 012   | -       | -         | -       |
| 51    | 173    |          | _       | -         | _             | 0.315       | 52        | 1 932   | 0 100   | -         |         |
| 51    | 173 30 |          | -       | -         | -             | 0.313       | 32        | 1 993   | 0.100   | 52        | /47     |
| 51    | 176    | 4 e      | -       | -         | -             | -           | -         | -       | 0.098   | 52        | 1 893   |
| 51 30 | 165 30 | 1 4 8    |         | CM.       | -             | 0 1 ( 0     | -         | -       | 0.096   | 52        | 1 104   |
| 51 30 | 166    | 1.40     | 0       | SM        | 0*            | 0.108       | SM        | 0*      | -       |           | -       |
| 51 30 | 166 30 |          | -       | -         | -             |             | -         | -       | 0.161   | SZ        | 79      |
| 51 30 | 160 50 | • •      | -       | -         | -             | 0.285       | 52        | 355     | 0.167   | SZ        | 857     |
| 51 30 | 167 20 |          | -       | -         | -             | 0.242       | S2        | 237     | 0.177   | SZ        | 1 656   |
| 51 30 | 167 50 | 1 04     | -       | -         | -             |             | -         | -       | 0.186   | SM        | 1 932   |
| 51 20 | 160 20 | 1.04     |         | -         | -             | 0.206       | SM        | 552     | 0.205   | SM        | 1 380   |
| 51 20 | 108 50 | ••       | 0.707   | S2        | /89           | 0.118       | SM        | 1 143   | -       | =         |         |
| 51 30 | 109    | * *      | 0.670   | S2        | 1 498         | 0.227       | S2        | 276     | -       | ≂.        | -       |
| 51 30 | 169 30 | • •      | 0.601   | S2        | 1 222         | 0.271       | S2        | 710     | -       | -         | -       |
| 51 30 | 170    |          | 0.549   | S2        | 513           | 0.274       | S2        | 1 380   | -       | ~         | -       |
| 51 30 | 170 30 | 1.15     | -       | -         | -             | 0.202       | SM        | 1 932   | -       | -         | -       |
| 51 30 | 1/1    | 1.43     | -       | -         | -             | 0.269       | SM        | 1 932   | -       | .≂.       | -       |
| 51 30 | 171 30 |          | 1.5     |           |               | 0.477       | SM        | 1 932   | -       | -         | -       |
| 51 30 | 172    |          | -       | -         | · •           | 0.358       | S2        | 1 932   | 2.      | -         |         |
| 51 30 | 172 30 | ••       | -       | -         | 3 <b>-</b>    | 0.344       | S2        | 1 695   | 0.101   | S2        | 237     |
| 51 30 | 173    |          | -       | -         |               | 0.347       | S2        | 828     | 0.101   | S2        | 1 064   |
| 51 30 | 173 30 |          | -       | -         | 5 <del></del> | -           | -         | -       | 0.101   | S2        | 1 263   |
| 51 30 | 174    | 2010     | -       | -         | 19 C          | 10 <b>H</b> | -         | -       | 0.100   | S2        | 1 025   |
| 51 30 | 174 30 |          | -       | -         | 2 <b>4</b> 1  | -           | -         | -       | 0.098   | S2        | 158     |
| 52    | 167    |          | -       | ÷         |               | -           | -         | -       | 0,161   | S2        | 227     |
| 52    | 167 30 |          | -       | -         | -             | -           | -         | -       | 0.145   | S2        | 907     |
| 52    | 168    | ••       | 0.702   | S2        | 113           | 0.252       | SM        | 302     | 0.051   | SM        | 1 398   |
| 52    | 168 30 | 3.69     | 0.759   | SM        | 831           | 0.312       | SM        | 76      | -       |           |         |
| 52    | 169    |          | 0.680   | S2        | 113           |             | -         |         | -       | -         |         |
| 52    | 169 30 |          | 0.564   | S2        | 151           | -           | -         | -       | -       | -         | -       |
| 52    | 170    | ••       | 0.507   | S2        | 1 133         | 0.172       | SM        | 340     | -       | -         | -       |
| 52    | 170 30 | 2.12     | 0,492   | S2        | 76            | 0.406       | SM        | 1 813   | -       | 12        | 2       |
| 52    | 171    |          | -       | -         | _             | 0.286       | SM        | 1 889   |         | 1.2       | -       |
| 52    | 171 30 |          | -       | -         | -             | 0 348       | \$2       | 1 587   | 0 103   | \$2       | 302     |
| 52    | 172    |          | -       | -         | -             | 0 370       | 52        | 1 511   | 0.105   | \$2       | 378     |
| 52    | 172 30 |          | _       | _         | _             | 0.368       | 52        | 756     | 0.096   | 52        | 1 1 2 2 |
| 52    | 173    |          | -       | 2         | -             | 0,393       | \$2       | 227     | 0.090   | 52        | 1 200   |
| 52 30 | 168    | •••      | 0 669   | \$2       | 38            | 0.269       | 52        | 227     | 0.100   | 52        | 1 209   |
| 52 30 | 168 30 | 2.97     | 0 716   | SM        | 680           | 0.200       | 52        | 400     | 0.104   | 52        | 1 300   |
| 52 30 | 169    | 4.0.74   | 0.547   | \$2       | 401           | 0.552       | SM        | 20      | 0.103   | 54        | 502     |
| 52 30 | 05 991 | * *      | 0.0476  | 62        | 471           | 0,040       | 3m<br>60  | 20      | -       | -         |         |
| 52 30 | 170    | * *      | 0.424   | 52        | 70            | 0.304       | 52        | 50      | -       | -         | 186     |
| 25 20 | 1/0    |          | 0.420   | 54        | 247           | 0.300       | SM        | 1 24/   | -       | -         | -       |

 $\star$  Insufficient bathymetric data available for bottom area calculation.

#### Campbell Plateau (Area 3W), December 1976-January 1977 (cont.)

|         |                    |     |                            | 200-400 m       |      | 400-600 m      |                 |      | 600-800 m      |                 |      |                |
|---------|--------------------|-----|----------------------------|-----------------|------|----------------|-----------------|------|----------------|-----------------|------|----------------|
| Lat,    | Area<br>Lat. Long. |     | Japanese<br>Comm.<br>CPSHF | Rel.<br>density | Туре | Bottom<br>area | Rel.<br>density | Туре | Bottom<br>area | Rel.<br>density | Туре | Bottom<br>area |
| E 20 20 | 1 1700             | 201 | 2 35                       | _               | _    | -              | 0.187           | SM   | 1 889          | -               | -    |                |
| 52 30   | 170                | 50  | 2.00                       | 0 466           | \$2  | 76             | 0.304           | S2   | 1 813          | -               | *    | (#)            |
| 52 30   | 171                | 20  | * *                        | 0.400           | \$2  | 113            | 0.350           | S2   | 1 776          | -               | -    |                |
| 52 30   | 1/1                | 50  | 2 55                       | 0.478           | \$2  | 302            | 0.460           | SM   | 1 511          | 0.083           | S2   | 76             |
| 52 30   | 172                | 20  | 2.09                       | 0.4/0           | 02   | 502            | 0 334           | SM   | 1 813          | 0.081           | S2   | 76             |
| 52 30   | 172                | 30  | 2.00                       | _               | _    | -              | 0.500           | SM   | 1 473          | 0,105           | S2   | 378            |
| 52 30   | 173                | 20  | * *                        | _               | _    | _              | 0.415           | S2   | 38             | 0,108           | \$2  | 264            |
| 52 30   | 1/3                | 50  | * *                        | -               | _    | -              |                 | -    | -              | 0,116           | S2   | 355            |
| 52      | 169                | 30  | 6 A                        | _               | _    | _              | 0.258           | S2   | 142            | 0.098           | S2   | 1 562          |
| 52      | 160                | 50  | 0.78                       | 0 169           | 51   | 497            | 0.144           | SM   | 923            | 0.041           | S1   | 355            |
| 52      | 169                | 30  | 1 /9                       | 0.109           | SI   | 710            | 0.344           | SM   | 284            | 0.090           | S1   | 604            |
| 50      | 170                | 00  | 1.447                      | 0,367           | 52   | 497            | 0.285           | SM   | 817            | 0.095           | S2   | 462            |
| 22      | 170                | 30  | 2 68                       | 0.007           | -    |                | 0.390           | SM   | 1 775          | 0.098           | S2   | 71             |
| 55      | 170                | 00  | 2.00                       | 0 449           | 52   | 142            | 0.325           | S2   | 1 633          | 0.099           | S2   | 71             |
| 53      | 171                | 30  |                            | 0 463           | 52   | 355            | 0.340           | S2   | 1 136          | 0.093           | S2   | 355            |
| 55      | 171                | 50  |                            | 0 471           | \$2  | 107            | 0.329           | SM   | 1 349          | 0.069           | S2   | 391            |
| 53      | 172                | 30  | 2 3/.                      | 0,4/1           | -    | -              | 0.356           | SM   | 1 278          | 0.012           | S1   | 462            |
| در      | 172                | 50  | 2.54                       |                 | -    | _              | 0.570           | SM   | 355            | 0.121           | SM   | 1 030          |
| 52      | 173                | 30  |                            | _               | -    | _              | -               |      | -              | 0.112           | S2   | 178            |
| 53 30   | 169                | 30  | • •                        |                 | -    | -              | _               | -    | -              | 0.102           | S2   | 801            |
| 53 30   | 100                | 30  |                            | -               |      | _              | -               | -    | -              | 0.090           | S2   | 871            |
| 53 30   | 169                | 30  | • •                        | -               |      | -              | 2               | -    | _              | 0.094           | S2   | 592            |
| 52 20   | 109                | 50  | 1 37                       |                 | -    | -              | -               | -    | -              | 0.093           | SM   | 488            |
| 53 30   | 170                | 20  | 1 /                        |                 |      | _              | 0 329           | \$2  | 139            | 0.096           | S2   | 348            |
| 53 30   | 170                | 20  |                            | -               | _    |                | 0.150           | SM   | 35             | 0.098           | S2   | 906            |
| 53 30   | 1/1                | 20  | • •                        | 5               | -    | 52             | 0 202           | SM   | 70             | 0.094           | S2   | 1 045          |
| 53 30   | /⊥/⊥<br>172        | 50  | ••                         |                 |      |                | 0 345           | \$2  | 35             | 0.082           | S2   | 488            |
| 53 30   | 1/2                | 20  | ••                         | -               |      |                | 0.040           | -    | -              | 0.080           | 52   | 70             |
| 53 30   | 1/Z                | 20  | • •                        | -               | -    | -              | -               |      | -              | 0.000           |      | , 0            |

#### Southland (East) (Area 4E), November-December 1975

|                 |                    | Japanese         |                | 200-400 m       |            |                |                 | 400-600 m |                | 600-800 m       |      |                |       |
|-----------------|--------------------|------------------|----------------|-----------------|------------|----------------|-----------------|-----------|----------------|-----------------|------|----------------|-------|
| La              | Area<br>Lat. Long. |                  | Comm.<br>CPSHF | Rel.<br>density | Туре       | Bottom<br>area | Rel.<br>density | Туре      | Bottom<br>area | Rel.<br>density | Туре | Bottom<br>area |       |
| 46 <sup>0</sup> | )                  | 170 <sup>°</sup> | )              |                 | 0.499      | 52             | 90              | 0 443     | \$2            | 60              |      |                | 24    |
| 46              |                    | 170              | 30             | 2,38            | 0.336      | SI             | 179             | 0 322     | S1             | 1.70            |      |                | 10    |
| 46              | 30                 | 169              | 30             | 4,27            | 0.697      | SM             | 144             | 0.560     | SM             | 179             |      | -              | 419   |
| 46              | 30                 | 170              |                | 2,98            | 0.595      | 52             | 108             | 0,372     | S1             | 170             |      | -              | 209   |
| 47              |                    | 169              |                | 3,74            | 0.296      | SM             | 295             | 0.621     | SM             | 679             |      | -              | 220   |
| 47              |                    | 169              | 30             | 3.92            | 1,158      | SM             | 295             | 0 126     | SM             | 510             |      | -              | 1 (0) |
| 47              |                    | 170              |                |                 | 1,190      | UII            | 27              | 0.120     | SM             | 314             |      | -              | 1 404 |
| 47              | 30                 | 167              | 30             | 3,43            | -          |                | _               | _         | _              | -               | 1.5  |                | 14/   |
| 47              | 30                 | 168              | 30             | 4,16            | 0.515      | SM             | 88              | 1 0/4     | SM             | 112             | -    |                | 24.0  |
| 47              | 30                 | 169              |                | 3.90            | 0 397      | SM             | 29              | 0 855     | SM             | 112             | -    | -              | 342   |
| 47              | 30                 | 169              | 30             |                 | 0.007      | 511            | 27              | 0.000     | 511            | 490             | 285  | -              | T 243 |
| 48              |                    | 167              | 30             | 7 33            | 1 380      | c1             | 25              | 1 221     | 52             | 47              | 2.55 | -              | /0/   |
| 48              |                    | 168              | 50             | 5.17            | 1 261      | ST             | 55              | 1.221     | 51             | 1/              | 85   |                |       |
| 48              |                    | 168              | 30             | 5.04            | 0 201      | 00             | 17              | 0.099     | SPI            | 87              | -    | ÷              | 954   |
| 48              |                    | 169              | 50             | 5:04            | 0.090      | 32             | 17              | 0.859     | 52             | 47              |      | -              | I 996 |
| 48              |                    | 169              | 30             | • •             | -          | -              | -               | 0.768     | 52             | 35              | -    | -              | 2 118 |
| 40              | 30                 | 166              | 20             |                 | 0 7/0      | -              | -               | -         | -              | -               |      | -              | 1 222 |
| 40              | 30                 | 147              | 50             | 4.09            | U./68      | SI             | 559             | 0.784     | Sl             | 303             | -    | -              | 81    |
| 40              | 20                 | 107              | 20             |                 | 0,998      | S2             | 244             | 1,001     | S2             | 291             | -    | -              | 553   |
| 40              | 30                 | 10/              | 30             | 1.3/            | 1.546      | SM             | 76              | 1.234     | S1             | 506             |      |                | 1 245 |
| 48              | 30                 | 168              | 30             | 5,61            | -          | -              |                 | -         | -              | -               |      | -              | -     |
| 48              | 30                 | 169              |                |                 | -          | 5              | 3 <b>5</b> 3    | 0.784     | S2             | 17              |      | -              | 1 670 |
| 48              | 30                 | 169              | 30             |                 | -          | -              | · • ·           | 0.714     | S2             | 35              | 243  | -              | 1 147 |
| 48              | 30                 | 170              |                | * *             | 2 <b>4</b> | -              | 2 mil           | -         | -              | -               |      | 8              | 553   |
| 48              | 30                 | 170              | 30             | • •             | 14         | -              |                 | -         | -              | 1. <b>.</b> .   |      | -              | 1 187 |

Southland (East) (Area 4E), May 1976

|     |                  |      |                   |           | 200-400 m           |                  |                                                                                                                 |              | 400-600 m      |                  |         | 600-800 m |       |  |
|-----|------------------|------|-------------------|-----------|---------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------|---------|-----------|-------|--|
| 1   | Area<br>Lat Long |      | Japanese<br>Comm. | Rel.      | Tupe                | Bottom           | Rel.                                                                                                            | Type         | Bottom         | Rel.<br>density  | Type    | Bottom    |       |  |
| Lat |                  | Lon  | 8.                | Gronr     | density             | type             | area                                                                                                            | Gensley      | type           | arca             | denorey | 1990      | 61.66 |  |
| 460 |                  | 1690 | 30'               | 2.19      | 5 <b>4</b> 0        |                  |                                                                                                                 | -            |                | -                | -       | -         | -     |  |
| 46  |                  | 170  |                   | 3.99      | 0.551               | S1               | 90                                                                                                              | 0.070        | SM             | 60               | · · · · | -         | 36    |  |
| 46  |                  | 170  | 30                | 5.28      | 0.701               | S1               | 179                                                                                                             | 0.200        | S1             | 179              | -       | -         | 419   |  |
| 46  | 30               | 169  |                   | 1.36      |                     | 2 <del>-</del> - | -                                                                                                               | (=)          |                |                  | -       |           |       |  |
| 46  | 30               | 169  | 30                | 1.71      | 0.265               | SM               | 144                                                                                                             | 0.163        | 51             | 179              | -       | -         | 269   |  |
| 46  | 30               | 170  |                   | 1,17      | 0.463               | S2               | 108                                                                                                             | 0.066        | S1             | 179              | -       | -         | 538   |  |
| 47  | (5).F            | 168  |                   | 1.53      |                     | 100              |                                                                                                                 | -            | -              |                  |         | -         | -     |  |
| 47  |                  | 168  | 30                | 1,59      | (H)                 | -                | -                                                                                                               |              |                | -                |         | -         | -     |  |
| 47  |                  | 169  |                   | 1,83      | 0,151               | SM               | 295                                                                                                             | 0.208        | SM             | 678              | -       | -         | -     |  |
| 47  |                  | 169  | 30                | 0.83      | 0.282               | S2               | 29                                                                                                              | 0.097        | S1             | 519              | 19 C    | -         | 1 404 |  |
| 47  |                  | 170  |                   |           | 1997 (1997)<br>1997 | 1.00             |                                                                                                                 | -            | 1000           | -                | -       | -         | 147   |  |
| 47  | 30               | 167  | 30                | 2.08      | -                   | -                | 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - | -            | . <del>.</del> | -                | -       | -         | -     |  |
| 47  | 30               | 168  | 30                | 1.98      | 0.311               | SM               | 88                                                                                                              | 0.654        | SM             | 112              | 390 (   | -         | 342   |  |
| 47  | 30               | 169  | 2.2               | 2.71      | 0,112               | SM               | 29                                                                                                              | 0.429        | S1             | 490              | S       | -         | 1 593 |  |
| 47  | 30               | 169  | 30                | 100000120 | 1000 AV             | 1150             |                                                                                                                 | 0.250        | S2             | 47               | -       | -         | 767   |  |
| 48  | oeum i           | 167  | 2010              | 0.99      | -                   | -                | -                                                                                                               |              |                | -                | (=)     | -         | -     |  |
| 48  |                  | 167  | 30                | 3.65      | 0.468               | S1               | 35                                                                                                              | 0.681        | S1             | 17               | (#)     | -         | -     |  |
| 48  |                  | 168  | 1.5               | 3.81      | 0.437               | S2               | 81                                                                                                              | 0.546        | S2             | 87               | -       | -         | 954   |  |
| 48  |                  | 168  | 30                | 3.77      | 0.361               | S2               | 17                                                                                                              | 0.226        | SM             | 47               | -       | -         | 1 996 |  |
| 48  |                  | 169  | 200               | 13.40     |                     |                  |                                                                                                                 | 0.368        | S2             | 35               | -       | -         | 2 118 |  |
| 48  |                  | 169  | 30                | 214       | 6 <b>4</b> 0        |                  | 5 <b></b> )                                                                                                     | ( <b>#</b> 1 | -              |                  | (m)     | -         | 1 222 |  |
| 48  | 30               | 166  | 30                |           | 0.444               | S2               | 559                                                                                                             | 0.541        | S2             | 303              | -       | -         | 81    |  |
| 48  | 30               | 167  | 55                |           | 0.453               | S2               | 244                                                                                                             | 0.599        | S2             | 291              | -       | -         | 553   |  |
| 48  | 30               | 167  | 30                | 3.66      | 0.456               | \$2              | 76                                                                                                              | 0.645        | S1             | 506              | -       | -         | 1 245 |  |
| 48  | 30               | 168  |                   | 14,19     | (m)                 |                  | ( <b>2</b> )                                                                                                    |              | <u></u>        |                  | 3.563   | -         | -     |  |
| 48  | 30               | 169  |                   | 100000    |                     | 12               | -                                                                                                               | 0.373        | S2             | 17               |         | -         | 1 670 |  |
| 48  | 30               | 169  | 30                |           |                     | -                | -                                                                                                               | 0.325        | S2             | 35               |         | -         | 1 147 |  |
| 48  | 30               | 170  |                   | 22        |                     | -                | -                                                                                                               |              | -              | (1997)<br>(1997) |         | _         | 553   |  |
| 48  | 30               | 170  | 30                |           | -                   | -                | -                                                                                                               |              | <u>_</u>       | 2                |         | _         | 1 187 |  |
|     |                  |      | 10 M              |           |                     |                  |                                                                                                                 |              |                |                  |         |           |       |  |

#### Southland (East) (Area 4E), November-December 1976

|                 | Japanese<br>Area Comm.<br>Lat. Long. CPSHF |    |                | 200-400 m       |      |                | 400-600 m       |      | 600-800 m      |                 |      |                |
|-----------------|--------------------------------------------|----|----------------|-----------------|------|----------------|-----------------|------|----------------|-----------------|------|----------------|
| Lat.            |                                            |    | Comm.<br>CPSHF | Rel.<br>density | Туре | Bottom<br>area | Rel.<br>density | Туре | Bottom<br>area | Rel.<br>density | Туре | Bottom<br>area |
| 46 <sup>°</sup> | 1700                                       |    |                | 0.207           | 52   | 90             | 0.093           | \$2  | 60             | 0:154           | \$2  | 36             |
| 46              | 170                                        | 30 |                | 0.211           | 52   | 179            | 0.099           | 52   | 179            | 0:161           | 52   | 419            |
| 46 30           | 169                                        | 30 | 0,93           | 0.207           | SM   | 144            | 0.072           | S1   | 179            | 0,118           | S1   | 269            |
| 46 30           | 170                                        |    | 0              | 0,203           | S2   | 108            | 0.090           | S2   | 179            | 0,152           | S2   | 538            |
| 46 30           | 170                                        | 30 | 2.16           | -               | -    | -              | -               | -    | -              | -               | -    | -              |
| 47              | 168                                        |    | 0.82           | -               | -    | -              | -               | -    | -              | -               | -    | -              |
| 47              | 168                                        | 30 | 0              | -               | -    | -              | -               | -    | -              | -               | -    | -              |
| 47              | 169                                        |    | 1.26           | 0.153           | SM   | 295            | 0.086           | SM   | 678            | -               | -    | -              |
| 47              | 169                                        | 30 | 1.24           | 0.146           | SM   | 29             | 0.100           | SM   | 519            | 0.166           | S1   | 1 404          |
| 47              | 170                                        |    | • •            | -               | -    | -              | -               | -    | -              | 0,165           | S2   | 147            |
| 47 30           | 167                                        | 30 | 1.07           | -               | -    | -              | -               | -    | -              | -               | -    | -              |
| 47 30           | 168                                        | 30 | 1.44           | 0.143           | SM   | 88             | 0.121           | SM   | 112            | 0,187           | SI   | 342            |
| 47 30           | 169                                        |    | 1,25           | 0.119           | SM   | 29             | 0.161           | SM   | 490            | 0.177           | SM   | 1 593          |
| 47 30           | 169                                        | 30 |                | -               | -    | -              | 0.112           | S2   | 47             | 0,176           | S2   | 767            |
| 48              | 167                                        | 30 | 5.21           | 0.403           | S1   | 35             | 0.308           | S1   | 17             | -               | -    | -              |
| 48              | 168                                        |    | 2.21           | 0.046           | SM   | 81             | 0,191           | S2   | 87             | 0.137           | S1   | 954            |
| 48              | 168                                        | 30 | 1.44           | 0.221           | S2   | 17             | 0,169           | SM   | 47             | 0.160           | S1   | 1 996          |
| 48              | 169                                        |    | 1.38           | -               | -    | -              | 0.132           | S2   | 35             | 0.183           | S1   | 2 118          |
| 48              | 169                                        | 30 |                | -               | -    | -              | -               | -    | -              | 0.189           | S2   | 1 222          |
| 48 30           | 166                                        | 30 | • •            | 0.344           | S2   | 559            | 0.123           | SM   | 303            | 0.130           | S2   | 81             |
| 48 30           | 167                                        |    |                | 0.351           | S2   | 244            | 0.148           | S2   | 291            | 0,103           | S2   | 553            |
| 48 30           | 167                                        | 30 | 1.96           | 0.190           | SM   | 76             | 0.094           | S1   | 506            | 0.052           | SM   | 1 245          |
| 48 30           | 168                                        |    | 1,90           | -               | -    | -              | -               | -    | -              | -               | -    | -              |
| 48 30           | 168                                        | 30 | 1.76           | -               | -    | ×              | -               | -    | -              | -               | -    | -              |
| 48 30           | 169                                        |    | 2.42           | -               | -    | -              | 0.134           | S 2  | 17             | 0,263           | S1   | 1 670          |
| 48 30           | 169                                        | 30 | ••             | <u> </u>        | -    | 8              | 0.126           | S2   | 35             | 0.212           | S2   | 1 147          |
| 48 30           | 170                                        |    | ••             | -               |      | -              | -               | -    | -              | 0.193           | S2   | 553            |
| 48 30           | 170                                        | 30 | • •            | -               | -    | -              | -               | -    | -              | 0.185           | S2   | 1 187          |

#### Southland (West) (Area 4W), November-December 1975

|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                                        | 200-400 m                                                      |                                                                        |                                                                                        | 400-600 m                                                                  |                                                                        |                 | 600-800 m |                                                                    |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------|-----------|--------------------------------------------------------------------|--|
| Lat.                                                                               | Area<br>Long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Japanese<br>Comm.<br>CPSHF | Comm. Rel.<br>CPSHF density                                                            |                                                                | Bottom<br>area                                                         | Rel.<br>density                                                                        | Туре                                                                       | Bottom<br>area                                                         | Rel.<br>density | Туре      | Bottom<br>area                                                     |  |
| 45° 30'<br>46<br>46<br>46 30<br>46 30<br>46 30<br>46 30<br>46 30<br>47<br>47<br>47 | $     \begin{array}{r}       166^{\circ} \\       165 & 30 \\       166 & 30 \\       165 & 30 \\       166 & 166 \\       166 & 30 \\       167 \\       165 & 30 \\       166 & 30 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\       167 \\   $ | 1.18                       | 0.172<br>0.172<br>0.175<br>0.168<br>0.168<br>0.168<br>0.153<br>0.135<br>0.135<br>0.125 | S2<br>S2<br>SM<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2<br>SM | 123<br>161<br>819<br>640<br>730<br>114<br>120<br>484<br>-<br>18<br>147 | 0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061<br>0.061 | S2<br>S2<br>SM<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2<br>S2 | 166<br>293<br>586<br>120<br>383<br>155<br>227<br>275<br>12<br>65<br>71 |                 |           | 135<br>138<br>6<br><br>239<br>407<br>257<br>167<br>236<br>88<br>88 |  |
| 47 30<br>47 30<br>48<br>48 30                                                      | 166<br>166 <b>30</b><br>166<br>166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 0.145<br>0.135<br>0.144<br>0.145                                                       | S2<br>S2<br>S2<br>S2<br>S2                                     | 224<br>177<br>87<br>146                                                | 0.061<br>0.061<br>0.061<br>0.061                                                       | S2<br>S2<br>S2<br>S2<br>S2                                                 | 59<br>59<br>93<br>70                                                   |                 | -         | 106<br>41<br>81<br>244                                             |  |

#### Southland (West) (Area 4W), November-December 1976

|                 |      |                  |    |                   |             | 200-400 m |        |         | 400-600 m |        |         | 600-800 m |        |  |
|-----------------|------|------------------|----|-------------------|-------------|-----------|--------|---------|-----------|--------|---------|-----------|--------|--|
|                 |      | Area             |    | Japanese<br>Comm. | Rel.        |           | Bottom | Rel.    |           | Bottom | Rel.    |           | Bottom |  |
| La              | t.   | Long             |    | CPSHF             | density     | Туре      | area   | Density | Type      | area   | density | Туре      | агеа   |  |
| 45 <sup>0</sup> | 30 1 | 166 <sup>0</sup> |    |                   | 0.139       | S2        | 123    | 0.227   | S2        | 166    | 0.260   | S2        | 135    |  |
| 46              |      | 165              | 30 |                   | 0.146       | S2        | 161    | 0.245   | S2        | 293    | 0.286   | S2        | 138    |  |
| 46              |      | 166              |    | 2.34              | 0,134       | S1        | 819    | 0.212   | SM        | 586    | 0,283   | S2        | 6      |  |
| 46              |      | 166              | 30 | * *               | 0.132       | S2        | 640    | 0.117   | SM        | 120    | -       | -         | -      |  |
| 46              | 30   | 165              | 30 |                   | 0.169       | S2        | 730    | 0.282   | S2        | 383    | 0,298   | S2        | 239    |  |
| 46              | 30   | 166              |    | 2.61              | 0.161       | S2        | 114    | 0.375   | SM        | 155    | 0,329   | SM        | 407    |  |
| 46              | 30   | 166              | 30 | 1,48              | 0.141       | S2        | 120    | 0.350   | SM        | 227    | 0.186   | Sl        | 257    |  |
| 46              | 30   | 167              |    | 1.07              | 0.072       | S1        | 484    | 0.189   | S1        | 275    | 0.175   | S2        | 167    |  |
| 47              |      | 165              | 30 |                   | 2 <b></b> 2 | -         | -      | 0.278   | S2        | 12     | 0.281   | S2        | 236    |  |
| 47              |      | 166              | 30 |                   | 0.465       | SM        | 18     | 0.252   | S2        | 65     | 0.198   | S2        | 88     |  |
| 47              |      | 167              |    | 0.64              | 0.050       | S1        | 147    | 0,112   | S1        | 71     | 0.080   | S1        | 88     |  |
| 47              | 30   | 166              |    |                   | 0.278       | SM        | 224    | 0.255   | S2        | 59     | 0.238   | S2        | 106    |  |
| 47              | 30   | 166              | 30 | 1.53              | 0.204       | SM        | 177    | 0.251   | S1        | 59     | 0.191   | S2        | 41     |  |
| 48              |      | 166              |    |                   | 0.233       | S2        | 87     | 0.248   | S2        | 93     | 0.225   | S2        | 81     |  |
| 48              | 30   | 166              |    |                   | 0.211       | S2        | 146    | 0.244   | S2        | 70     | 0.222   | S2        | 244    |  |

#### West Coast, South Island (Area 5), June-July 1976

|      |                    | Tananasa |                |                 |              | 200-400 m      |                 |       | 400-600 m      |                 |       | 600-800 m      |            |  |
|------|--------------------|----------|----------------|-----------------|--------------|----------------|-----------------|-------|----------------|-----------------|-------|----------------|------------|--|
| La   | Area<br>Lat. Long. |          | Comm.<br>CPSHF | Rel.<br>density | Туре         | Bottom<br>area | Rel.<br>density | Туре  | Bottom<br>area | Rel.<br>density | Туре  | Bottom<br>area |            |  |
| 4.00 | ,                  | 1600     |                | 0.37            |              | _              |                 |       |                |                 |       |                |            |  |
| 40   |                    | 172      |                | 0.96            | -            | -              | -               | _     | -              | _               | -     | -              | -          |  |
| 40   | 30                 | 169      | 30             | 0.90            | -            |                | -               | -     |                |                 | 0 2/8 | \$2            | 37         |  |
| 40   | 30                 | 170      | 50             |                 | -            |                | -               | -     | -              |                 | 0.240 | 52             | 2 243      |  |
| 40   | 30                 | 170      | 30             | 2.48            | 0 234        | 52             | 147             | 0 466 | \$1            | 1 213           | 0.266 | S1             | 993        |  |
| 40   | 30                 | 171      | 20             | 2.40            | 0.247        | S2             | 1 471           | 0.537 | \$2            | 880             | 0.200 | -              | -          |  |
| 40   | 30                 | 171      | 30             | 0.96            | 0            | SM             | 404             |       | -              | -               |       | -              | -          |  |
| 40   | 30                 | 172      |                | 1.65            | -            | -              | -               | -     | _              | -               | -     | -              | <b>2</b> 7 |  |
| 41   |                    | 169      | 30             | 0               | -            | -              | <b>12</b> 5     | -     | -              | -               | -     | -              | <b>1</b>   |  |
| 41   |                    | 170      |                | 2.09            | -            | -              | -               | 0.608 | S2             | 145             | 0.203 | SM             | 1 739      |  |
| 41   |                    | 170      | 30             | 3.80            | 0.211        | S1             | 1 377           | 0.635 | S1             | 942             | _     | -              | -          |  |
| 41   |                    | 171      |                |                 | 0,231        | S2             | 1 631           | -     | -              | (#):            | -     | -              | -          |  |
| 41   | 30                 | 170      |                | 2.85            | -            | -              | -               | 0.719 | SM             | 456             | 0,299 | SM             | 1 405      |  |
| 41   | 30                 | 170      | 30             | 3.50            | 0.132        | SM             | 1 757           | 0.008 | SM             | 211             | -     | -              | -          |  |
| 41   | 30                 | 171      |                |                 | 0.240        | S2             | 35              | -     | -              | -               | -     | -              | -          |  |
| 42   |                    | 170      |                | 2.70            | -            | -              | 3 <b>4</b> 0    | 0.711 | SM             | 588             | 0.426 | SM             | 1 003      |  |
| 42   |                    | 170      | 30             | 3,30            | 0.356        | SM             | 553             | 0.559 | SM             | 553.            | -     | -              | -          |  |
| 42   | 30                 | 168      | 30             | 0               | -            | -              | -               | -     | -              | -               | -     | -              | -          |  |
| 42   | 30                 | 169      |                | 0.44            | ( <b>=</b> ) | -              | -               |       | -              | -               | 0.060 | S1             | 67         |  |
| 42   | 30                 | 169      | 30             | 2.49            | -            | -              | -               | 0.558 | S1             | 436             | 0.372 | SM             | 671        |  |
| 42   | 30                 | 170      |                | 3.03            | 0,384        | S1             | 873             | 0.669 | S1             | 470             | 0.341 | S2             | 34         |  |
| 42   | 30                 | 170      | 30             | 3,58            | 0.536        | SM             | 269             | 0.665 | S2             | 34              | 1     | -              | -          |  |
| 43   |                    | 169      |                | 3,96            | 0.577        | S2             | 99              | 0,848 | S1             | 330             | 0,495 | SM             | 859        |  |
| 43   |                    | 169      | 30             | 6,44            | 0.750        | S1             | 463             | 1.380 | S1             | 595             | 0.332 | S2             | 132        |  |
| 43   |                    | 170      |                |                 | 0.490        | S2             | 33              | -     | -              | -               | -     | -              | -          |  |
| 43   | 30                 | 168      |                | • •             | 0.458        | S2             | 33              | 0.850 | S2             | 33              | 0.301 | S2             | 33         |  |
| 43   | 30                 | 168      | 30             | • •             | 0.492        | S2             | 99              | 0.889 | S2             | 99              | 0.334 | S2             | 397        |  |
| 43   | 30                 | 169      |                | • •             | 0.547        | S2             | 66              | 0,956 | S2             | 132             | 0.370 | S2             | 33         |  |

#### West Coast, South Island (Area 5), August-September 1976

|       |               |                            | 200-400 m       |      |                |                 | 400-600 m    |                | 600-800 m       |      |                |
|-------|---------------|----------------------------|-----------------|------|----------------|-----------------|--------------|----------------|-----------------|------|----------------|
| Lat.  | Area<br>Long. | Japanese<br>Comm.<br>CPSHF | Rel.<br>density | Туре | Bottom<br>area | Rel.<br>density | Туре         | Bottom<br>area | Rel.<br>density | Туре | Bottom<br>area |
|       | 1710 301      | 0 11                       | -               | -    | -              | -               | 1 <b>7</b> 7 | 2              | -               | -    | -              |
| 40    | 171 50        | 0.02                       | 2               | -    | =              | -               | -            | -              | -               | -    | -              |
| 40    | 160 30        | 0.72                       |                 | _    | 2              | -               | -            | *              | 0.159           | S 2  | 37             |
| 40 30 | 170           |                            | _               | -    | -              | -               | -            | -              | 0.145           | S2   | 2 243          |
| 40 30 | 170 30        | 1 57                       | 0 692           | 52   | 147            | 0,592           | SM           | 1 213          | 0.099           | Sl   | 993            |
| 40 30 | 170 50        | 1.07                       | 0 791           | 52   | 1 471          | 0.023           | SM           | 880            | -               | -    | -              |
| 40 30 | 171 30        | 4 0                        | 0.858           | \$2  | 404            | -               | -            | -              | -               | -    | 5              |
| 40 30 | 171 50        | 2.20                       | 01050           | -    | -              | 0.554           | S2           | 145            | 0.145           | Sl   | 1 739          |
| 41    | 170 30        | 1 33                       | 0 482           | SM   | 1 377          | 0.946           | SM           | 942            | -               | -    | -              |
| 41    | 170 50        | 4:00                       | 0.885           | 52   | 1 631          | -               | -            | -              | -               | -    | <u></u>        |
| 41    | 172           | 2 18                       | 0.000           | _    | 2              | -               | -            | -              | -               | -    | -              |
| 41 20 | 172           | 3 88                       | _               | _    | -              | 0.280           | SM           | 456            | 0.245           | S1   | 1 405          |
| 41 30 | 170 30        | 2.88                       | 0 766           | 51   | 1 757          | 0,544           | SM           | 211            | -               | -    | -              |
| 41 30 | 170 50        | 4.67                       | 1 206           | 51   | 35             | _               | -            | -              | -               | -    |                |
| 41 50 | 170           | 2 45                       | 1.200           | -    | 2              | 0.229           | SM           | 588            | 0.155           | SM   | 1 003          |
| 42    | 170 20        | 2.40                       | 1 086           | SM   | 553            | 0.366           | SM           | 553            | -               | -    | -              |
| 42 30 | 160           | 2.25                       | 1.000           | -    | -              | -               | ~            |                | 0.177           | S.2  | 67             |
| 42 30 | 160 30        | * *                        | _               | -    |                | 0.279           | S2           | 436            | 0,175           | S2   | 671            |
| 42 30 | 170           | 1 4 8                      | 0 362           | S1   | 873            | 0.195           | S1           | 470            | 0.170           | S 2  | 34             |
| 42 30 | 170 30        | 3 26                       | 0.605           | SM   | 269            | 0.319           | S2           | 34             | -               | -    |                |
| 42 30 | 170 50        | 5.20                       | 0.651           | \$2  | 99             | 0.326           | S2           | 330            | 0.176           | S2   | 859            |
| 43    | 160 20        | * *                        | 0.597           | 52   | 463            | 0,295           | S2           | 595            | 0,175           | S 2  | 132            |
| 43    | 109 50        | * *                        | 0.570           | 52   | 33             | -               | -            | -              | -               | -    |                |
| 43    | 160           | * *                        | 0,0705          | \$2  | 33             | 0.363           | S2           | 33             | 0.174           | S2   | 33             |
| 45 30 | 140 20        |                            | 0.690           | S2   | 99             | 0.351           | S2           | 99             | 0.175           | S2   | 397            |
| 43 30 | 100 00        |                            | 0.070           | 52   | 66             | 0.336           | S2           | 132            | 0.175           | S2   | 33             |
| 43 30 | TØÄ           | • •                        | 0.009           | 52   | 00             | 01000           |              |                |                 |      |                |

# **Assessment of the Deep-water Fish Resource of the New Zealand Area**





**Fisheries Research Division Occasional Publication No. 21**