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ABSTRACT

A mathematical model of phytoplankton blooms in an arm of Manukau Harbour is
described. It includes the processes that could be important in promoting and controlling
a bloom: cell photosynthesis (driven by incident PAR and its attenuation down the water
column); cell respiration; zooplankton grazing; benthic filtering; cell settling; vertical
mixing; horizontal mixing. Horizontal advection is accounted for by using a Lagrangian
moving frame-of-reference, and horizontal mixing has been incorporated simply, by
including a tidal exchange coefficient. In this way the model is restricted to just two
independent variables (depth under the reference frame and time), which keeps it
relatively simple and allows attention to be focussed on the kinetics of growth and loss.
The model has been tested for accuracy with known solutions and is applied to a
substantial bloom recorded in the Wairopa Channel in Manukau Harbour in February-
March 1992. Broad agreement was obtained between measured and simulated results
using plausible values of the model parameters. The critical physical parameters were
found to be water depth (via its effect on respiration losses), flushing and water clarity.
The critical biological parameters were phytoplankton respiration and community

composition, and benthic filtering.
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INTRODUCTION

Phytoplankton populations can increase rapidly in estuaries. For example, spring-time blooms
have been recorded consistently in South San Francisco Bay, California (Cloern 1991a).
Recently a bloom has been recorded in the Manukau Harbour, Auckland (Vant & Budd 1993).
This occurred in the late summer of 1992, in the upper reaches of the Wairopa Channel which

extends from Puponga Point to Onehunga (see Fig. 1).
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Figure 1 The Wairopa Channel, northern Manukau Harbour. Sampling sites
M, H, S, E correspond to sites 1, 2, 3, 4 of Vant (1991). The numbers identify
the box-model segments used by Vant & Williams (1992).

The data collected during September 1991-April 1992 from sites M, S and E, are displayed on
Fig. 2 (daily tide range, photosynthetically available radiation—PAR, and wind speed are also
shown). At Mangere (site M) chlorophyll a concentration, a measure of biomass, rose from a
background of 5-10 mg m~=3 to 65 mg m~3 during the bloom (similar to the South San
Francisco Bay blooms, which typically rise to 45 mg m=3 from a background of about 3 mg
m~3). These samples were dominated by diatoms (>98% of biovolume), particularty Odontella
sinensis (51-95% of biovolume). At Shag Point (site S) the chlorophyll a concentration during
the bloom attained 18.8 mg m>, and at the harbour entrance (site E) concentrations were

always low (< 3 mg m3).
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Figure 2 Phytoplankton biomass and environmental conditions in Manukau Harbour,
September 1991-April 1992. A, Biomass at sites M(0), S(x) and E (A), all at high tide
(Vant & Budd 1993); B, tide range at Onehunga Wharf (Ministry of Transport
1990/1991); and C, solar radiation and D, wind speed at nearby Auckland Airport
(NIWA Climate Database, unpubl. data).



Modelling of this striking phenomenon has the potential to shed light on the predominant
causes of phytoplankton growth in the Harbour, and this report presents an initial attempt to do
so. The basic approach taken has followed that of Cloern (1991a), which in turn used the
framework laid down by Winter et al. (1975) for blooms in Puget Sound and by Jamart ef al.
(1977) for blooms in offshore waters. This uses two independent variables: time and depth.
The model equations are developed from the principle of conservation of mass, so that
information is needed on mixing coefficients, and on the growth and loss rates for
phytoplankton. The equations are solved numerically in the program BLEST (BLooms in
ESTuaries).

We assume that phytoplankton growth is not limited by nutrient availability during the bloom
(although it was observed that inorganic nitrogen levels fell to unusually low values toward the
end of the bloom—Vant & Budd 1993—so that silicon levels probably declined as well:
Brzezinski 1985). On the basis of past experience, and literature precedent, the major
processes to be incorporated are: horizontal advection and mixing; vertical mixing;
phytoplankton settling; phytoplankton growth (as affected by temporal and spatial variations in
light flux); zooplankton grazing; and benthic filtering by bivalves. Horizontal advection is
accounted for by using a Lagrangian moving frame-of-reference, and horizontal mixing has
been incorporated simply, by including a tidal exchange coefficient. In this way the model is
restricted to just two independent variables (depth under the reference frame and time), which
keeps the mixing description relatively simple and allows attention to be focussed on the
kinetics of growth and loss. A more complete examination of mixing patterns would require a
three-dimensional model, beyond our resources at the present time. In any event, it is desirable
to obtain as much explanatory power as possible with the present simpler form. The
appropriate values for a number of the parameters are not well-known for Manukau Harbour.
We have identified likely values which we use in the simulations described here. We also

examine the sensitivity of the model results to changes in the values of the various parameters.



STRUCTURE OF THE MODEL

Units

Mass is always measured in milligrams. The units for photon flux, distance and time depend

on the scale of measurement. Our usage differs somewhat from that of Cloern (1991a): i.e.,

« we use PEinst m—2 s-! for instantaneous PAR, and Einst m-2 d-! for daily PAR (total PAR
in 24 hours); Cloern used only the latter (1 Einst m~2 d-! = 11.574 pEinst m2 s-1).

+ depth is measured in m, but for the vertical mixing coefficient we use cm? s-!, as is common;
Cloern used m? d-! (1 cm? s-! = 8.64 m? d-1).

» for photosynthesis rate we use mg C (mg chl. a)~! h-! (because the data were obtained from
short-term incubations: 3—4 h); Cloern used mg C (mg chl. a)-! d-! (because his data were

from 24 h incubations).

Chlorophyll a concentration is the dependent variable, denoted by B, and measured in mg chl. a

m-3.

Time variation

As the purpose of the modelling is to gain information on the progress of chlorophyll a
concentration (as a surrogate for phytoplankton density), time must always be an independent
variable. We denote this by £. However, whereas Cloern (1991a) modelled chlorophyll
concentrations over the 14 days of a neap-spring cycle, in this exercise we model

concentrations over a seasonal time-frame.

Horizontal advection

Modelling of blooms in offshore waters has typically used only one spatial dimension, the
depth at a fixed site (Winter et al. 1975, Jamart et al. 1977, Radach & Moll 1990). This is
based on the observation that horizontal gradients of phytoplankton are typically much smaller
than those in the vertical, and horizontal currents are usually small. However, in contrast to
offshore waters, estuaries and harbours have strong horizontal currents due to the tidal cycle,
and these currents will bring waters containing different concentrations of chlorophyll to a site,
even if local gradients are relatively small. For this reason using only the depth at a fixed site
as the independent variable, ignoring horizontal flows, is not appropriate in estuaries.
However if one uses a moving (Lagrangian) reference frame, which moves up or down the
harbour as the tide rises and falls, the effect of horizontal flows is much reduced. Such usage

takes account of horizontal advection implicitly.

Accordingly, the only spatial dimension used in the model is depth under a moving reference
frame. The frame is located at site M (by Onehunga Wharf) at high tide. By low tide it is near
site H (Cape Horn) for a neap tide, and is near site S (Shag Point) for a spring tide (based on



the drogue data in Hume 1979). We assume that the frame returns to site M at each high tide.
The depth under the frame is denoted by z, the estuary floor being at z = H. For South San
Francisco Bay Cloern (1991a) used a constant depth (H = 10 m). We also use constant depth,
i.e., we assume that the depth under the moving frame remains roughly constant, even though
the depth at a fixed site changes through each tidal cycle. This greatly simplifies the input and
modelling procedure. Furthermore, we ignore the fact that the harbour has complex
bathymetry (i.e., both channels and intertidal areas are present), and simply use the average
cross-section depth of the region through which the frame moves (i.e., segments 3, 4 and 5:
Fig. 1). From Vant & Williams (1992) the relevant value is H = 3 m. Any photosynthesis—
and thus growth of phytoplankton—occurring at greater depths is ignored. This is a reasonable
assumption, since the degree of PAR attenuation in this part of the harbour (see later) means

that most of the time photosynthesis is confined to the upper 3 m of the water column.

Horizontal mixing
This mixing is caused by local variations of current velocity from the velocity of the reference
frame, with the result that some of the water upstream of the frame is exchanged with

downstream water. We model the exchange of biomass in this water by:

mass exchanged in time Af = & B- B At/Aty (D
where
B = average chlorophyll a concentration under the frame during time Az, mg m3;
B = average chlorophyll a concentration near the harbour entrance;

Aty = semidiurnal tidal period (0.53 d);

£ = tidal exchange coefficient, the proportion of biomass exchanged during Afy.

The By, term is included in eq. 1 to allow some of the biomass downstream of the moving
reference frame to augment the upstream biomass. If it were not included, then predicted
biomass at the frame could fall to impossibly low levels. We use a value of 2 mg m3, similar

to the average value measured at site E (see Fig. 2A).

Vant & Williams (1992) have applied a box model (using 10 boxes) to the whole Manukau
Harbour, using salinity data for calibration. Their exchange coefficient refers to transfer of
water over the boundary between adjacent boxes, from one high tide to the next. For the
boundary crossing the Wairopa Channel between Cape Horn and Shag Point (sce Fig. 1), they
found coefficients of 0.05 for each of the boundaries between boxes 5 & 3, and 5 & 4. We use

a similar value (0.06: see later).



Vertical mixing

In common with many other studies, we assume that the rate of vertical mixing of
phytoplankton biomass can be adequately described by Fick's law. That is, the flux of
biomass per unit horizontal area is —K,(dB/dz), where B(z,f) is the concentration of biomass
and K,(¢) is the vertical mixing coefficient. We assume that K is constant both in the vertical
and during any given semidiurnal tidal period (Atr ), but that it may vary between tides. In
particular, we may expect that K, will be higher for spring tides than for neap tides: the greater

the tidal range the stronger the current variations.

When identifying appropriate values for K, it needs to be recognised that even though the
model makes explicit use of only one spatial dimension (z), it is in fact two-dimensional
(through the use of the moving reference frame). This is important because a mixing
coefficient in a one-dimensional model is much greater than in a two-dimensional or three-
dimensional model (Yotsukura 1977). (A spatial dimension is removed by averaging currents
over that dimension, and so the variability of the current in that direction becomes incorporated

into the mixing coefficient.)

In selecting appropriate values we note that literature values are scarce. Cloern (1991a) used
K, = 5-50 m2 d-! (0.6-5.8 cm? s~!) for South San Francisco Bay. The lower value was
assumed for neap tides, the latter for spring tides. Lung & O'Connor (1984) applied a tidally-
averaged two-dimensional model to salinity distributions in four US estuaries, and obtained
vertical diffusion coefficients in the range 0.3-9.0 cm? s-!. Of these, the James River (K, =
2.0-3.0 cm? s 1) estuary has the most similar depth to Manukau Harbour. Because of weaker
tides, it has a stronger vertical salinity difference however (= 2, whereas Vant & Williams 1992
report that the annual average of fortnightly measurements in Manukau Harbour was only 0.2).
For no salinity difference, Lung & O'Connor found that K, = 3.8-9 cm? s~!, and these figures

may therefore be more appropriate to Manukau Harbour.

Guymer & West (1988) reported on a 1982 study of a reach in the upper Conwy estuary (north
Wales) which appears to have a similar tidal range to Manukau Harbour (Guymer & West
1991: Fig. 3). They used a dye tracer and a moving reference frame, but were unable to obtain
a flood tide coefficient because of difficulties in obtaining good vertical spatial definition of dye
concentration. They found the ebb tide vertical diffusion coefficient to be in the range 6-21
cm? s~1, The vertical salinity distribution was not reported (transverse diffusion studies at this
site in similar conditions the following year recorded a vertical salinity difference = 3, West et
al. 1986, Guymer & West 1991). West & Cotton 1981 had previously found 14-24 cm? s-!
for the ebb tide in this reach, and also 32-67 cm? s-! for the flood tide.



We infer that for Manukau Harbour K, in the range 0.6-5.8 cm? s~! (5-50 m2 d-'), as used by
Cloern (1991a) for South San Francisco Bay, is likely to be too low. Salinity stratification can
be marked in the Bay, but not in Manukau Harbour. Suppression of vertical mixing by
stratification will be therefore be minimal. From the above studies, a typical K, in these

conditions could be taken as 10-20 cm? s~1.

Another consequence of low stratification is that the ratio of spring tide K, to neap tide K is
likely to be less than that used by Cloern (his ratio = 10). We note that Manukau Harbour tidal
streams at spring tide are about double those at neap tide. If K, is proportional to the product
of the depth-mean velocity and depth (Fischer et al. 1979: 250), the spring tide K, should be
about three times the neap tide value, at least for non-stratified conditions. Given that vertical

salinity differences tend to be greatest at neap tides, we take a maximum ratio of 5.

Following Cloern (1991a) we assume that K, varies sinusoidally through the neap-spring

cycle:

1 oD
K,= 5 [(Kz,neap + Ky spring) + (Kz,spring — Kz,neap) COs (n;.;’:’S )] (2)

as shown on Fig. 3 (@ is a spring tide phase lag).

zZ,Spring

(cm2 s'l)

Neap Spring

Z.neap

1375 ——>»

t(d)

Figure 3 Variation of K, over the neap-spring tidal cycle.



It is clear from the above that much is yet to be learnt about vertical mixing in estuary flows.
Other values of K, reported in the literature (e.g., Fischer et al. 1979, Park & James 1988)
show wide variation. This 1s to some extent associated with the type of estuary studied (many
of which are on British coasts with large tidal range), but it would be helpful to obtain more

accurate estimates of K.

Phytoplankton settling

The settling velocity is denoted by w,. Cloern used ws = 0.5 m d-!. Smayda (1970) showed
how w; varies with cell size. For example, actively-growing cells of 10-20 pm diameter sink
at about 0.5 m d-!, while the rate is an order of magnitude higher for cells of 100 um. Vant &
Budd (1993) observed that cells of this latter size dominated the phytoplankton assemblage
during 16 January—24 March 1992, while rather smaller cells were present during the rest of
the period shown in Fig. 2. We therefore use wy; =5 m d-! when larger cells were present (16

January—24 March), and w; = 0.5 m d-! at other times.

Phytoplankton growth

To model phytoplankton growth at any time or depth we consider just photosynthesis and
respiration. The growth rate of phytoplankton resulting from these two processes is dB/dt =
uB, where B is the concentration of chlorophyll a and p is the specific (i.e., biomass-specific)
growth rate (in inverse time units). The gross photosynthesis rate (P) is related to PAR at that
time and depth; as P is expressed as mass of carbon per unit mass of chlorophyll a (per unit
time), a carbon-chlorophyll a ratio is required. We follow Cloern (1991a) in assuming that
respiration is a constant proportion of the light—séturated photosynthesis rate (Ppyax). The

equation for u at any time or depth can then be written generally as:

B = T (o) - ©
where:
u = specific instantaneous growth rate, h-!;
Pnax = maximum possible (light-saturated) rate of photosynthesis, mg C (mg chl. a) ! h-1;
0 = phytoplankton cellular carbon:chlorophyll a ratio, mg C (mg chl. a)-;
l = I/l is the PAR ratio, dimensionless (L = Iy just below the water surface);
I = PAR at depth z and time ¢, pEinst m—2 s-1;
I = saturation onset PAR (the PAR at which the initial slope of the P-I curve meets P =

Pmax), BEinst m~2 s-1;

' One must be aware of another, different, usage of g, i.¢., growth rate expressed as divisions d-'. Parsons er
al. (1984) denote this by u, to distinguish it from g. For constant g it follows that = (¢n2)u, = 0.693,,

and so the doubling time is either 0.693/u or, equivalently, 1/u,.



function relating P to I [i.e., P = Py p(1)], dimensionless (0 < p< 1);

©
il

~
It

phytoplankton respiration rate as a proportion of P, dimensionless.

During September 1991-April 1992 Pp,. and I were measured at monthly intervals at site M
(Vant & Budd 1993), and I just above the water (i.e., Iy) was measured continuously (Fig.

2C). These measured values are used here.

The carbon:chlorophyll a ratio (6) was not measured. In general, depending on the assemblage
of species present, it can vary widely: Chan (1980) reports 6 = 33-35 mg C (mg chl. a)~! for
diatoms, and 8 = 93-120 mg C (mg chl. a)! for dinoflagellates. Vant & Budd (1993) used
these values, together with the observed relative abundance of these two groups (no others
were important), to calculate assemblage-average values of 6. Dinoflagellates dominated
during September—December 1991, diatoms dominated during February—March 1992, while
both groups were abundant at other times. The corresponding mean values of 6 were 77, 35
and 50 mg C (mg chl. a)-!. Here we use the values of 6 calculated by Vant & Budd (1993) for
each of the 16 occasions during September 1991-April 1992 that microscopic analyses of the
phytoplankton assemblage were made, and obtain values for the remainder of the period by

interpolation.

Likewise, the respiration rate as a proportion of maximal photosynthesis (r) has not been
measured. Reviewing many. previous studies, Geider & Osborne (1989) observed that values
of r range from < 0.1 to about 0.5. Furthermore, they showed how r varied with algal class:
dinoflagellates having rather higher values (mean 0.35) than diatoms (~ 0.1), for example.
Here we assumed values of 0.35 and 0.10 for dinoflagellates and diatoms respectively, and
calculated assemblage-average values as we did for 6. During September—December 1991 and
February—March 1992 mean values of » were 0.25 and 0.11 respectively, with a mean value of
0.15 at other times.

Values of u can be calculated for the data we used, and also for the data used by Cloern
(1991a). This requires that one must specify the form of the P-I light function (i.e., specify the
form of p versus ). Cloern used the equation of Jassby & Platt (1976), i.e., p(1) = tanh(1), as
we do also. It should be noted that by calculating the daily average specific growth rate (1), we
can determine the phytoplankton doubling time. The procedures for doing so are given in
Appendix 1.

Variation of PAR with time through the tidal cycle
Incident PAR varies through each day. Previous data for the daily distribution of incident PAR
in the Auckland area (McBride et al. 1991) suggest that a slightly skinny half-sinusoid is the

appropriate form to use, at least for cloudless summer days. We adopted:
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Iy maxSin” (7 for0<t<1

I,(1) = (4)
0 else

where:

Io.max = PAR at solar noon just under the water surface (= 2200 pEinst m=2 s-! for a
cloudless Auckland mid-summer day); values were calculated from incident PAR,
assuming reflective losses of 5%;

n = PAR distribution shape index, dimensionless (n = 1 gives a regular sinusoid; the
shape becomes increasingly skinny as n increases above unity);

T

(t—tsunrise)/Aty, the fraction of photoperiod, dimensionless;

At, = Isunset — sunrise> the photoperiod length, d.

The value of n must be selected carefully. Parsons et al. 1984 (using results from Japanese
studies in the 1960s) suggested choosing n = 3 for fine days.. Denoting the daily insolation by
Q, we can show, by simple integration, that Q-3 = 4lp maxAt,/(31), whereas for a regular
sinusoid (n = 1) it 1s Q=1 = 2Io maxAt,/m. The assumed shape of the daily PAR variation is
therefore important—for the same maximum daily PAR (Jp,max) choosing n =1 gives 50%
more daily insolation than for n = 3 (see Fig. 4). However data collected near Auckland, in
February 1991, suggest that n = 3 is likely to seriously underestimate daily insolation, and that
n = 1.3 is optimal (Fig. 5). In this case Q-1 3 = 0.59) axAt, (obtained by integrating eq. 4
over the photoperiod, for n = 1.3). It may be noted that Platt et al. (1990)—considering integer
values only for n—found that n = 3 was never appropriate, and that n = 2 only became
appropriate for long days at high latitudes.

Variation of PAR with depth

Having obtained the daily variation of incident PAR, Iy(f), we must account for its attenuation
down the water column under the reference frame. Cloern (1991a) assumed an exponential
depth-wise attenuation (i.e., the Beer-Lambert law, which holds for monochromatic light, was
assumed to hold for PAR also). While not stated in his paper, the attenuation coefficient was

inflated by the degree of self-shading by the phytoplankton. The equation is:

I(z,t) = Io(t)e_g where C:j K (s) ds 5)
0
and:
{ = optical depth, dimensionless;
Ky = k,+ kB =vertical PAR attenuation coefficient, m!;
ky = vertical PAR attenuation for water and its non-algal constituents, m-1;

k. = self-shading coefficient for phytoplankton, m? (mg chl. a)-!.



11

0,max

T i sin(r)

sin’t)

<7 A > N

Figure 4 Contrast of daily insolation (the area under the I-¢ curve) for n =1 vs. n = 3.
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Figure 5 Fitting incident PAR (/) data with literature formulae. "LICOR" = data collected
(15 minute intervals) on a cloudless day beside SH16, near Hobsonville, using a LICOR
190SB Quantum Sensor. "sin' = fit using a regular sinusoid between sunrise and sunset (5.75
h and 19.5 h, Ministry of Transport 1990), and the inspected PAR maximum. "sin"1.3",
"sin"3" = fits using power sinusoids. "Fee" = calculations made from the procedure described
by Fee (1990:7), as elaborated in Appendix 2.
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Cloern (1991a) used k, = 1.3 m~!. His paper omits any discussion of self-shading, but his
program used the value based on Bannister (1974), k. = 0.016 m? (mg chl. a)-!. He
multiplied k. by B at 1 m depth, approximately the midpoint of the euphotic zone, through
which phytoplankton biomass is reasonably evenly-distributed. In BLEST we multiply k. by

the value of B in each control volume.

Much of the time observed PAR attenuation and phytoplankton biomass in the northern
Manukau Harbour are consistent with k. = 0.02 m2 (mg chl. a)-! (Vant & Budd 1993).
However, we can expect k. to decrease with increasing cell size (Kirk 1975). For a large
cylindrical diatom like O. sinensis we could expect k. = 0.004 m? (mg chl. a)-!, with high
scattering in the waterbody causing the effective value to be at least twice this (Kirk 1976). We
therefore use k. = 0.01 m? (mg chl. a)-! during 16 January—24 March 1992 when large
diatoms were observed to dominate the assemblage (see earlier), and k. = 0.02 m2 (mg chl. a)-!

at other times.

Variation of non-algal attenuation

Vant (1991) showed how mid-tide values of K at site M during 1987-88 could be predicted
knowing daily tidal range and wind speed. Using data in Vant (1991) and Vant & Smith
(1991) we repeated that analysis for high tide values of k, (= Ky — k.B). The resulting

regression equation:

Ui+ U3, +0.1(Uy + U
2000

k, = 0.40R + 1.62[ ] _0.08 (6)

where R is the mean daily tide range (m), Uy is the mean daily wind speed (knots) and Uy_, is
the value on the preceding day, accounted for 76% of the observed variability in &, during
1987-88. Values of k, calculated using eq. 6 and the relevant results in Fig. 2 agreed well
with those measured on 11 occasions at site M during September 1991-April 1992 (Vant &
Budd 1993). Eq. 6 was therefore used to calculate daily k, during September 1991-April
1992.

For a fixed reference frame one can expect there to be variation within tides also: k, would be
maximal at low tide, because the site will have received turbid inter-tidal water, and will contain
clearer water at high tide. However, water under a moving reference frame can be expected to
have maximum k, at mid tide, when currents are strongest. We have made the rough
assumption that this within-tide variation can be ignored: k, is therefore a tidal-average.
Indeed, averaged fortnightly data for the 1987/88 year show only a 4% difference between K,
(and hence k) at high tide at Onehunga (site M, see Fig. 1) and the mean of low tide K, at
sites H & S (recall that the tidal excursion extends from site M to site H at neap tide, and to site
S at spring tide).
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Zooplankton grazing

The biomass-specific zooplankton grazing rate is denoted by G (d-!). Cloern et al. (1985)
calculated G for San Francisco Bay based on the observed abundance of the zooplankton
present, and an estimate of the daily feeding rates of the various species. Very little is known
about zooplankton in Manukau Harbour. However, assuming community composition and
abundance are similar to those reported for the nearby Waitemata Harbour (see Figs 10-41 in
Jillett 1971), and that the carbon content of particular species is the same as that of animals of

the same genus in San Francisco Bay, we obtain:

BO—F
—{n 50 for B > B
G = (7)

0 else

where for summer conditions the upper bound to F, the total daily zooplankton ingestion rate

(mg C m3d1), is given by (after Cloern et al. 1985):

F = 7.6(1 — e-001(8 - BG=0)0) (8)

We used values of G calculated this way in our simulations. Note that egs 7 and 8 identify a
threshold biomass below which grazing does not occur (symbol Bg-g), as is commonly found

in the sea for example (Parsons et al. 1984: 133). We have assumed Bg-o =1 mg m=.

Benthic filtering

Benthic filtering may control phytoplankton biomass in estuaries. This has been demonstrated
for clams and mussels in South San Francisco Bay (Cloern 1982, Officer et al. 1982), and for
cockles and mussels in the Oosterschelde, The Netherlands (Herman & Scholten 1990). There

are similar indications for mussels in the Wadden Sea (Asmus & Asmus 1991).

The benthic filtering rate can be quantified by «, defined as the volume of water filtered by
benthic bivalves per unit time per unit bed area, measured in the units m> m2d-! (i.e., md-1!).
The most important intertidal benthic bivalves in Manukau Harbour are Austrovenus
stutchburyi, Mactra ovata and Crassostrea gigas (much less being known about the animals
present in the channels). Median sizes of individuals of these species occurring in northern
Manukau Harbour are about 26, 40 and 75 mm respectively (Bioresearches 1987, and
Auckland Regional Council, unpubl. data). Using flesh dry weights per animal of 0.13 g (see
Vant & Smith 1991), 0.42 g and 1 g (e.g., Deslou-Paoli ef al. 1992), and the relationships in
Mpghlenberg & Riisgard (1979), we can calculate filtering rates per individual under laboratory

conditions of about 2, 3 and 6 1 h~! respectively.
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For segments 3, 4 and 5 Austrovenus are present across the intertidal zone at average densities
of about 4, 3 and 45 m2 respectively; while the values for Mactra are about 3, 3 and 7 m—2 (R.
D. Pridmore, and Auckland Regional Council, unpubl. data). Crassostrea are present at an
average density of 241 m=2 (Bioresearches 1987); the area of available habitat can be calculated
as the length of rocky coastline (6.1 km in segment 3, and 8.1 km in segment 5) times the
width of the zone occupied, assumed to be 10-100 m. If we assume Crassostrea are filtering
half of the time (i.e., at tide heights above mean sea level), and the Austrovenus and Mactra
present in an area equivalent to the part of the intertidal zone submerged at mean sea level are
always filtering, then the volume of harbour water filtered by each of these species is as shown
in Table 1.

Table 1 Volume of harbour water filtered by intertidal bivalves

Segment 3 Segment 4 Segment 5

Area of intertidal below MSL (10 m?2) 5.49 8.79 16.11
Austrovenus - density (m2) 4 3 45

- number filtering (10°) 22 26 725

- volume filtered (10 m3 d-!) 1.0 1.3 34.8
Mactra - density (m2) 3 3 7

- number filtering (109) 16 26 113

- volume filtered (106 m3 d-") 1.2 1.9 8.1
Crassostrea - density (m2) 241 - 241

- number filtering (10°) 14.7-147 B 19.5-195

- volume filtered (106 m3 d-") 1.1-10.6 - 1.4-14.1

If we use the value at the midpoint of the range for the Crassostrea, the total volume filtered is:

[37.1 (Austrovenus) + 11.2 (Mactra) + 13.6 (Crassostrea)] x 106 m3 d-!
=61.9x 106 m3 d-!

Note that most (82%) of this occurs in segment 5.

To calculate o we need to divide this volume per day by the total area at (mean) high water (i.e.,
intertidal plus channels). For segments 3, 4 and 5 the value is 70.6 x 106 m2, giving a value for
o of 0.88 m d-.

Channels occupy 20.9 x 105 m? of these segments, and if bivalves there filtered at only one
fifth the specific rate of those in the sub-MSL intertidal (= [61.9 x 106 m3 d-!)/[30.4 x 106 m2]
= 2.1 m d-!), then they would filter a further 8.8 x 106 m3 d-1 (= 0.2 x 2.1 m d-! x 20.9 x 106

m?2), giving a total of 70.7 x 106 m3 d-!, so that @ = 1 m d-!, the value we use here.
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Differential form of the equations
All the above defines an initial and boundary value problem which can be written concisely for

the unknown B(z,t) as:

0B 0 oB
S +3-wB-KS2) = 4B - G(B - Bgao) - A% (B - Beo) ®)

with the initial condition (at ¢ = 0, for any z):
B(z,0) = B; (9a)
where B; must be prescribed. The boundary conditions (at z = 0 and H, for any ¢) are:

oB
(wsB = K:5.),.0 =0 (9b)

OB
(wsB = K.5.),oy = OB,y (9¢)

where o (m d-!) must be prescribed. It is assumed that the benthic bivalves remove all

biomass from the water they filter.

Note that Cloern (1991a) has the third-to-last term of eq. 9 as (u — r)B, but this was a

typographical error.

Method of solution
Although the problem posed by eqs. 9 is linear, analytical solutions have not been found
(because of the dependence of coefficients K, and pon ). Accordingly, approximate numerical
solutions must be obtained. This involves solving a discrete form of eqs 9 on a depth-time
grid. We have used the control-volume approach to derive the scheme of equations, as
described in Appendix 3. It has been implemented in a PC FORTRAN code, using double-
precision arithmetic to minimise rounding errors. The code is written in user-friendly form,
with these features:

* input and output variables are always displayed with their units;

* multiple runs can be performed during a single session;

* current input data can be checked at any time, and overwritten for a new run;

» results of a run can be displayed in digit form on a single screen;

» full results, including a listing of all input data and units, are posted to an output file.
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Accuracy of solutions

The BLEST code has been run with test cases for which the analytical solution is known, as
explained in Appendix 4. Excellent accuracy was obtained, giving good confidence in results
obtained for more complex cases. In view of the results obtained, the time-weight (see eq.
A3.3) was set at @ = 0.5. Note that using-the control-volume approach guarantees that the
code is fully mass-conservative. Other schemes (as may be developed from the finite

difference approach) may not be, see Appendix 5.
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APPLICATION TO MANUKAU HARBOUR

The challenge for this model is to see whether it can mimic the bloom as depicted on Fig. 2A.
If it can, using plausible values of the parameters, then it may shed light on conditions for

which blooms may recur in the future, and help to guide investigations into the key processes.

To examine this we used a number of plausible values of the model's coefficients, as outlined
previously. These all used the Jassby-Platt equation with time-varying PAR, Ar = 1 hour, and
Az = H/100 m. Fig. 6 shows the simulated values of surface chlorophyll a at site M at high
water during September 1991-April 1992 (with later starting dates in the period September—
January giving virtually identical results). The measured values are also shown. Apart from a
substantial discrepancy in the middle of February, there is broad agreement between measured
and simulated values. In particular (i) values are generally low until January, (ii) they increase
to about 60 mg m—3 at the end of February, and (iii) fall around the middle of March and remain
low through to the end of the period. Table 2 lists the parameters used in this "best fit"

simulation.
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Figure 6 Measured (o) and simulated (line) surface biomass at high tide, site M.
Parameters for the simulation are shown in Table 2.

Mean daily growth rate averaged through the water column (eq. A1.7, see Appendix 1) peaked
at 0.92 d-! (i.e., a doubling time of 0.75 d) on 12 February. During February—March 1992,
when growth was appreciable, the mean rate was 0.39 d-! (corresponding to a doubling time of
about 2 d). Growth rates during this period were strongly correlated with the average level of
PAR in the water column (= Io[1-exp{~{,—y })/ {.=g) (correlation coefficient = 0.90, n = 60),
reflecting the dominant role of underwater PAR in controlling phytoplankton growth (as

expected from eq. 3). The important sinks for phytoplankton carbon at this time were
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respiration and benthic filtering, which accounted for an average of 52% and 37% of the carbon
removed from the system respectively; flushing losses were less important (10%), and

zooplankton grazing was only a minor sink (1%).

Table 2 Parameter values used for the "best fit" simulation (see Fig. 6).

B; 2 mg chl. a m3

Byea 2 mg chl. a m™?

G eqs 7 and 8, with B;_y =1 mg chl. a m™3

r 0.10-0.35, depending on the observed composition of the phytoplankton assemblage

0 34-106 mg C (mg chl. a)~!, depending on the observed composition of the phytoplankton
assemblage

o 1 m d-!, see Table 1 and following text

k. 0.01-0.02 m? (mg chl. a)~', depending on cell size of observed assemblage

W, 0.5-5m d', depending on cell size of observed assemblage

ky eq. 6

P axs Ix measured values (Vant & Budd 1993)

3 0.06

K7 neap 10 cm? s_1

Kz, spring 30 cm? 5!

H 3m

The effects of changing the values of certain of the parameters are illustrated in Figs 7-10. In
many cases simulated values of surface chlorophyll a were low (< 3 mg m3) during

September-December 1991, so only the results from January 1992 are shown in Figs 7 and 9.

Figs 7 and 8 show the effects of changing the important physical parameters. The simulations
were sensitive to water depth (Fig. 7A). At H > 5 m levels of biomass were low (< 5 mg m=3).
This was due to increased respiration losses in the aphotic zone. As photosynthesis is usually
restricted to the upper 3 m, any additional depth imposes an increased respiratory sink for the
phytoplankton community.

Large changes in the tidal exchange term produced marked changes in simulated biomass (Fig.
7B). For & > 0.3 blooms did not occur (biomass < 10 mg m=3). Lower levels of biomass
were also produced by low values of K, (Fig. 7C), presumably because weaker circulation of
cells through the euphotic zone reduces overall photosynthesis. But the simulations were

reasonably insensitive to substantial (e.g., 5-fold) increases in K.
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Figure 7 Effects on simulated biomass of varying certain physical parameters as
follows: A, water depth (H); B, tidal exchange (&); and C, vertical mixing coefficients
(Kzneap/Kz,spring). Parameters for the thick lines are given in Table 2, with alternative
values noted on each of the other lines.
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For September 1991-April 1992 the mean value of calculated k, was 1.85 m~!. Fig. 8 shows
the effect of lower values of k, (i.e., clearer water) on growth: blooms occurred earlier and
reached higher levels (although the very high levels shown here are probably not realistic, since
the vigorous growth required could be expected to deplete nutrient levels and thus restrict
growth). Similarly, if the contribution of wind to calculated k, during March-April was

ignored, the bloom continued for 3—4 weeks more (results not shown).
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Figure 8 Effect of varying non-algal PAR attenuation (k). The thick line shows results
obtained using the calculated (eq. 6) values of k, (mean = 1.85 m~!), while the other lines
are for k, held constant at 0.1 m~! (upper line) and 0.5 m~! (lower line) respectively.

Figs 9 and 10 show the effects of changing the important biological parameters. Decreasing the
settling rate by a factor of ten resulted in somewhat more biomass, while a 4-fold increase in

settling produced a greater decline in biomass (Fig. 9A).

The simulations were particularly sensitive to changes in the diatom respiration rate. Halving
the rate (to rgjatom = 0.05) resulted in an earlier and much greater bloom, while an increase of
50% (10 rgiatom = 0.15) meant the bloom did not occur at all (Fig. 9B). Setting both diatom and
dinoflagellate respiration to 0.10 meant the bloom started earlier (late December), with surface
biomass peaking at ~ 90 mg m3 in mid-February, and then continuing as in Fig. 6. During the
period of the bloom the average growth rates for rgjatom = 0.10 and rgatom = 0.05 were similar
(~ 0.4 d-1). From eq. A1.7 it might have been expected that a lower respiration rate would
produce a rather higher growth rate. However, the lower value of rgjaom meant more biomass
was produced (Fig. 9B) so that self-shading increased. As a result lower rgiaiom meant depth-
averaged /, and thus depth-averaged P, were lower too, so the growth rate remained about the

same.
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Figure 9 Effects on simulated biomass of varying certain biological parameters as
follows: A, settling velocity (Wssmaller cells/Ws,larger cells); B, diatom respiration as
proportion of Py (rdiatom); dinoflagellate respiration assumed constant at 0.35; C,
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zooplankton grazing (G). Parameters for the thick lines are given in Table 2, with
alternative values noted on each of the other lines.
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Fig. 9C shows the effects of halving or doubling the values of the self-shading coefficient (k)
for the assemblages of larger and smaller cells. The bloom still occurred, but lower values of

k. produced higher simulated biomass, and vice versa.

Benthic grazing was another key factor. In the absence of grazing the bloom began in the
middle of December, with biomass being ~ 200 mg m=3 in February—March, before declining
by April. As grazing increased biomass declined (Fig. 9D), with no bloom occurring at o >
1.7m d-1. By contrast, the simulations were much less sensitive to zooplankton grazing. Fig.
9E shows the effect of varying G in the range 0-0.1 d-!. For an assemblage dominated by
diatoms, and relatively low values of B (= 2.5 mg m=3), G = 0.1 d-! corresponds to higher
values of F (eq. 8) than those calculated for the assumed composition and abundance of
zooplankton in Manukau Harbour. For B in the range 5-50 mg m3, F is about 2-20 times
higher than expected. Despite this higher zooplankton grazing, a bloom still occurred. And in
the absence of grazing (G = 0 d-!) biomass was only slightly higher than in the "best fit"

simulation.

Fig. 10 shows how the simulations were affected by the composition of the phytoplankton
assemblage. If dinoflagellates were never present and the only diatoms were smaller-sized,
then biomass would have been high throughout the summer. By contrast, dinoflagellates, with
their higher values of 6 and r were unable to grow. Only with a lower respiration rate (r =
0.25) and substantially clearer water (k, = 0.1 m-') did dinoflagellate-only simulations result in
a bloom (with B reaching ~ 20 mg m~3 in December).

100

Surface chlorophyll 2 (mg m-3)

1991 1992

Figure 10 Effect of varying the composition of the phytoplankton assemblage. Thick
line shows results obtained using observed proportions of diatoms and dinoflagellates to
calculate community-average values of 6 and r (assuming 7 giaom = 0.10), while thin line
18 based on the assumption that the community was comprised solely of (small) diatoms.
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DISCUSSION

These simulations suggest that the parameters which are important in determining the ability of
phytoplankton to bloom in Manukau Harbour are:

« water depth (Fig. 7A);

+ flushing (Fig. 7B);

e non-algal light attenuation (Fig. 8);

« phytoplankton respiration (Fig. 9B);

e benthic filtering (Fig. 9D); and

» phytoplankton community composition (Fig. 10).

Furthermore, it is clear that rather a lot of information on these parameters is required if
reasonable simulations are to result. In particular, values are required for the following
physiological characteristics of the phytoplankton community: light-saturated rate of
photosynthesis (Pyay), saturation onset PAR (1), self-shading coefficient (k), respiration as a
proportion of Py« (), cell carbon:chlorophyll a ratio (6), and settling velocity (wy). And all of
these vary with time, either seasonally or as the composition of the phytoplankton assemblage
shifts.

In many instances we have had to use literature values of these physiological parameters to
estimate the likely values for the phytoplankton assemblage in Manukau Harbour. One
interpretation of the "best fit" simulation shown in Fig. 6 is that these, and other unknown
parameters, have been estimated satisfactorily. Alternatively, the effects of any errors may have
cancelled each other. Regardless, it is noteworthy that relatively small changes in certain
parameters (e.g., r, &) resulted in simulated levels of biomass which were markedly different
from those measured. We cannot at present establish whether our assumed values for such
parameters were correct, nor whether any short-term (e.g., diurnal) variation in them was

minor (as we implicitly assume).

In highlighting the importance of such uncertainties, the model serves a valuable role in
identifying where future studies are desirable. For example, studies of the benthic bivalve
communities appear to be more important to our understanding of phytoplankton dynamics than
studies of the zooplankton assemblage. Furthermore, the ease with which numerical
experiments may be conducted is very useful in examining hypotheses and testing pre-
conceived notions (e.g., does growth increase or decrease as respiration falls? would blooms

be more likely if the benthic bivalves were decimated by over-harvesting or poisoning?).

Thus far the modelling has assumed that the harbour segments have a uniform cross-section (of

depth H). However, respiration losses are undoubtedly greater in the channels than in the
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better-lit intertidal area, while the opposite may be the case for losses to the bivalve grazers. It
is not clear how important such differences between these habitats are. If the harbour waters
are well-mixed horizontally over a time-scale which is similar to or shorter than that at which
respiration- and grazing-induced losses become important, then it may be reasonable to ignore
these differences. It would be worthwhile to examine this issue further, possibly extending the

model to distinguish the intertidal and channel areas.

A related matter which also merits further attention concerns the fact that as the tide rises and
falls over the intertidal zone, the area of well-lit waters must vary considerably. The
underwater light climate and the associated phytoplankton photosynthesis will therefore be
affected by the degree to which the rise and fall of the tide and the sun are in phase—which in

Manukau Harbour varies from day-to-day over a fortnightly cycle.

The role of nitrogen and silicon in restricting growth should also be considered in the future.
As observed earlier, inorganic nitrogen levels fell substantially during the bloom, presumably
due to uptake by the rapidly-growing phytoplankton. As a result, simulations which produced
extended periods of very high biomass (e.g., Fig. 8) are unlikely to be realistic. A useful
extension of the model would therefore be to incorporate the parameters of nutrient uptake by
phytoplankton. Such an extension would enable investigations to be made of the effects of
possible reductions in harbour nutrient concentrations (e.g., following improvements in

wastewater treatment).
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NOMENCLATURE

Significant variables (M = mass, L = length, T = time, E = photon flux):
B chlorophyll a concentration, M L3

Bgea chlorophyll a concentration in the water beyond the harbour, M L3
Bg-o chlorophyll a concentration at which zooplankton grazing ceases, M L3
Courant number (=w,Af/Az), dimensionless

daylength (24 hours), h

daily zooplankton ingestion rate, M T-!

specific zooplankton grazing rate, T-!

depth under the moving reference frame, L

PAR, E M2 T-!

incident PAR, just below the water surface, E M2 T-1

Saturation onset PAR, E M2 T-1

node number, dimensionless

vertical attenuation coefficient for PAR, L-!

self-shading coefficient, L2 M-!

vertical attenuation coefficient for PAR in the absence of phytoplankton, L-!
vertical mixing coefficient for moving reference frame, L2 T-!
mass of chlorophyil a in control volume, M

mass of chlorophyll a in water column, M

shape index for photoperiod PAR distribution, or time level; dimensionless
u—G - &Arr, T

instantaneous photosynthesis rate per unit biomass, T-!

daily insolation, E M2

respiration as a proportion of Pp,x, dimensionless

mean daily tide range, L

time, T

doubling time, T

mean daily wind speed, L T-!

settling velocity for phytoplankton, L T-!

depth under the moving reference frame, L

specific benthic filtering rate, L T-!

benthic Courant number (=aAt/Az), dimensionless

time step, T

photoperiod length, T

tidal period (12 h 40 min), T

grid distance interval, L.

optical depth (=zK,), dimensionless

cell carbon:chlorophyll a ratio, dimensionless

PAR ratio (=I/1;), dimensionless

net specific phytoplankton growth rate, T-!

tidal exchange coefficient, dimensionless

function relating P to /, dimensionless

grid dispersion number (=K,At/Az%), dimensionless

photoperiod fraction, dimensionless

time since last spring tide, T

photoinhibition parameter, dimensionless

time-weight for numerical scheme, dimensionless
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Appendix 1
CALCULATION OF DOUBLING TIMES

SUMMARY

The phytoplankton growth component of the model presented by Cloern (1991a) for South San
Francisco Bay is based on a long incubation technique, and thus his model is based upon total
cumulative PAR constant over 24 hours. In this case phytoplankton doubling times at the
surface may be simply calculated. However calculation of doubling times is more difficult
when using time-varying PAR (as we have used—we use short-term incubations), and/or
depth-averages. This appendix describes how doubling rates can be calculated in numerical
models. It also presents an analysis showing how doubling times can be calculated
analytically, for both the Cloern and BLEST models (this excludes photoinhibition, though in

principle it could be included).

This analysis shows that, using the Jassby-Platt photosynthesis-light equation with an
exponential extinction of PAR down the water column and a sinusoidal variation of PAR
through the photoperiod, the doubling time (7) averaged over depths greater than the euphotic
depth is approximated by

EH(Z) . "(l max
T = ded that DX 20
[6(1.563+0.076710max/1k) } » providedithat 5 <=ge =<
My 7 , - r

where: L = Pnax/ 6 is the maximum specific phytoplankton growth rate in the absence of
respiration; 6 is the photoperiod day-fraction (the proportion of a day in sunlight); /o max is the
daily maximum PAR just below the water surface; I, is the saturation onset parameter; Z = zK,
is optical depth, where z = depth and K, = vertical PAR attenuation coefficient; and r is the
respiration proportion of the maximum growth rate. Generally Ip max < 51 only on very

overcast days.

The minimum possible doubling time, which occurs for phytoplankton at the water surface in
intense sunlight, is given by

14
T= —HQ-)—, provided that Ip max >> I

B Hs(S — 1)
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DEFINITIONS

The doubling time for phytoplankton (T) is typically of the order of days. Therefore it is
appropriate to use daily-average conditions when computing it. In doing so we must consider
the specific phytoplankton growth rate (4, as defined in eq. 3): doubling time is defined as the
natural logarithm of 2 divided by the appropriate specific growth rate, i.e.,

;_ (@) _ 0.69315
¥ 1

(A1.1)

where p* is a daily-average, and is either averaged over the water depth or is taken just under
the water surface. To make clear what averaging is employed, and to be consistent with the
main report, we follow the convention of McBride (1992) in which <u> refers to depth-
averaged growth rate, uy refers to daily-averaged growth rate (yrefers to integration over

Time), and the subscript ( refers to conditions just under the water surface.

If we expect substantial vertical mixing the depth-averaged specific growth rate is appropriate,
so that u* = <ur> in eq. Al.1, where

_[ pdr |dz J U r;ax (p-r) dt}dz
0 0 _ Y0 0

<= = HD - HD

(A1.2)

In this equation H = water depth; D = 1 day; u = instantaneous specific phytoplankton growth
rate; 1 = time since midnight; z = depth; Py, = maximum possible photosynthesis rate per unit
biomass (i.e., growth is fully light-saturated); 8 = the cell carbon to chlorophyll a ratio; p =

P/Pnax is the "photosynthesis ratio" (McBride 1992), where P = instantaneous photosynthesis
rate per unit biomass (so that 0 < p < 1); and r = respiration proportion of Pp,,x. If there is no

photoinhibition p is a function only of the PAR ratio (1), which is defined as (see also eq. 3):
L = A (A1.3)

To compute ¢ at any depth we use the Beer-Lambert Law:

L =1e s (Al1.4)
where i —5—: and Iy = PAR just under the water surface, I; = saturation onset parameter (= 1/a

in the terminology of Cloern 1991a, and assumed constant for a given species), and



o

{= Ide(s) ds (A1.5)
0

is the optical depth, with K, = vertical PAR attenuation coefficient (see also eq. 5).

If vertical mixing is very slow it may be more appropriate to consider the daily-averaged
phytoplankton doubling time at the water surface (To). This is obtained using the daily-

averaged specific growth rate of phytoplankton at the water surface defined by:

pp
[P 1y
Hro = = (A1.6)

where po = p(lp). In this case u* = urpineq. Al.l1.

From the above, to calculate T (or Tp), we must first calculate <ur> (or ro) by prescribing the
form of the variation of p with t. For example, to use the Jassby-Platt P-I equation we must set
p = tanh(1).

NUMERICAL CALCULATION OF DOUBLING TIMES

The numerical approximations to the required integrals (eqs Al1.2 & A1.6) are obtained by

substituting summations for the integrals. Accordingly we approximate eq. A1.2 by:

J N
p. L LP;
<pr> = —'Zﬂ[% —7] (ALT)

where J is the number of nodes in the vertical grid and N is the number of time steps in a day.

Similarly, eq. A1.6 becomes:

N n
Y. (Po)

pro= &:fi 1] (A1.8)
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ANALYTICAL FORMS FOR CALCULATION OF DOUBLING TIMES

General form of the growth rate equations
It will be helpful to define the "fraction of photoperiod" (), as in eq. 4, i.e.,

_ - fsunrisg
- (A1.9)

where Az, (= fsunset — fsunrise) 18 the photoperiod. The photosynthesis ratio is nonzero only
within the photoperiod (i.e., p > 0 only if 0 < 7 < 1). However, p = 0 from midnight to
sunrise (7 < 0), and also from sunset to midnight (7 =1). This property, along with eqs Al1.4
& Al.5, may be used to transform the equation for the daily- and depth-averaged specific
phytoplankton growth rate (eq. A1.2) to the simpler form:

o <pr>

| Z
<> = us[ / _;-], where <py> = _[n (J'O P01 d(:) dr (A1.10)

where ps = Ppay/6 is the maximum light-saturated specific growth rate in the absence of
respiration, 6 = At,/D is the photoperiod day fraction (the fraction of the day in sunlight), Z =

HK, is the optical depth at the bottom of the water column (K, assumed constant with depth),
and <pr> is the dimensionless "daily water column photosynthesis ratio" (McBride 1992).

Also, the equation for the daily-averaged specific phytoplankton growth at the water surface
(eq. A1.6) simplifies to:

1
/‘tT,O = ‘u,s(6pT’0 —r), Where pT,O = J‘ p[to(T)] dT (Alll)
0

where pr is a special case (i.e., surface value) of the dimensionless "daily photosynthesis
ratio at a given depth" (McBride 1992).

The maximum possible value of the growth rate occurs at the surface when 1y >> 1 throughout

the photoperiod, so that p = pr =1 also. Then the growth rate is

UT,0,max = Hs(6—1) (A1.12)

and the minimum possible doubling time is

09315
TU.min = g& (Al.]3)

ﬂs(é - )
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Doubling times for constant PAR

As noted above the model presented by Cloern (1991a) holds incident PAR constant. In this
case the growth rate equations (eqs A1.10 & Al.11) are simplified, because 6 = 1 and p-is
independent of 7 (so that <pr>=<p> = Jg P d'C, and pr=1).

As an example, let us consider Cloern's data: H = 10 m; Iy = 40 Einst m~2 d-!, I; = 10 Einst
m2d-!,K;=k,=1.3m! (ie., ignoring self-shading), Pmax = 100 mg C (mg chl a)-! d-1, 6
=50 mg C (mg chl a)!, and r = 0.05. Therefore, us=2 d-!,Z = 13 and 1, = 4. The Jassby-

Platt P-I equation was used.

Surface doubling time

Computing the surface doubling time (7p) is simple in this case. Inserting the above data into
eq. Al.11 we obtain ur o = 2[tanh(4) - 0.05] = 1.90 d-!, and so, from eq. Al.1, Tp = 0.37
days. The minimum possible surface doubling time, from eq. A1.13, is only slightly less—
0.36 days.

Depth-averaged doubling time

Substituting Cloern's data into eqs A1.4 & A1.10 we obtain the depth-averaged growth rate as

4 tanh(&)

<pr> = 2[PT7 ~ 0.05], where <pr> = [ tanh(4e-0)d¢ = 48_13?5. Computing this

integral is tedious (McBride 1992, Table 5*). However that Table shows that a convenient
solution can be obtained using the Smith P-I equation, which can be written in dimensionless
form as

D m— (Al.14)

V1 + 12

This can be expected to give results little different from the Jassby-Platt equation (McBride
1992). Substituting eqs A1.4 & A1.14 into the definition of <pr> (eq. A1.10) we obtain

%+qfé+l 2

<pr>= In , where i = Ige

%+4ﬂ§+1

(A1.15)

* It involves computing a partial fraction series with many terms, as shown in the Table—some 200 terms can
be needed for convergence. Alternatively one can use an asymptotic solution (Spiegel 1968: eq. 14.612), but
this may not be convergent.
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and substituting this back into eq. A1.10 we have

LO+:\/ l(2)+l

<ur>= || fn —r (Al1.16)

LZ-+-4\/ L%-F]

For a water column deeper than the euphotic depth (Z = 4.6) the denominator of the logarithm

1/Z

in this equation is approximately unity (because ¢z~ 0) and so we can compute the doubling
time for such depths as:

0.69315
T7-46 = (A1.17)

us[ﬁn(to + B+ 1)1/2 - r]

Using Cloern's data (s = 2 d-1, Z = 13, 19 = 4), Tz_13 = 0.34657/ [ in(4+T7) "= 0.05] =
3.12 days. This result is an order of magnitude larger than the T value obtained earlier, and
this is attributable to the large aphotic depth (some 64% of the total depth). If we were to

compute the doubling time only for the euphotic depth the result is Tey (= Ty_s¢) =
6
0.34657/[ en(4 +v17)"*° ~ 0.05] = 0.86 days.

Doubling times for time-varying PAR

Our incubations are short-term (3—4 hours), so the BLEST code allows for PAR varying with
time. In order to get analytical solutions let us assume that /( varies as a half-sinusoid through
the photoperiod, and so i, varies similarly:

masin(nr)  0<7<1
= (A1.18)

0 7<Qor7t>1

where 1o max 1s the PAR ratio just under the water surface at solar noon.*

In this section let us consider the data we used for the Manukau bloom (for 27 February 1992):
H =3m, Pyx=6.52mg C (mgchl a)! h!, =341 mg C (mg chl a) !, Ar, = 129 h, r =
0.1, Ky =k, =1.85m! (i.e., ignoring self-shading), I; = 93.9 pEinst m~2 s-!, and daily 39

* Note that this is equivalent to taking the shape index of the daily PAR half sinusoid as n = 1, whereas we
have used n = 1.3 in our modelling. This introduces an unknown error, which we nevertheless expect to be
small. Also, BLEST allows K,to be a function of depth.
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ground-level PAR = 20.1 MJ m—2 d-!. Therefore, ys = 6.52/34.1 = 0.191 h'!, Z = 5.55, and
0=12.9/24 = 0.54. We used the Jassby-Platt light equation.

To obtain Ly max, ground-level PAR must be converted to Ip max and given the same units as ;.
The conversion factors are: 2.1 (converting MJ m=2 d-! to Einst m~2 d-1); 11.574 (converting
Einst m~2 d-! to pEinst m—2 s-1); 0.57/8 (converting daily PAR to the maximum PAR in the
photoperiod); and 0.95 (allowing a 5% loss of ground-level PAR by reflection at the water

surface). S0 o max = 2.1x11.574x(0.5x1/0.54)x0.95x20.1 ~ 1356 pEinst m=2 s-!, and thus
lo,max = 1356/93.9 = 14.4,

Surface doubling time
To compute uro we must substitute this time varying PAR ratio into the Jassby-Platt light
function and substitute the result into eq. A1.11. As a result we must evaluate the integral pro

= J(l)tanh[to,maxsin(nr)] dr, for which an analytical solution has not been found. There are two

means of overcoming this difficulty.

The first is to note that a simple nomograph of pr versus i« is available McBride (1992: Fig.
4). This was obtained by numerical integration, and we can use it to read the value of p; for a
given value of 1, (actually lp max in this case, as our "depth" is zero). So using ity max =
14.4, we read that for the Jassby-Platt equation pro = 0.97, and so eq. Al.11 gives urgo =
0.191(0.54x0.97-0.1) = 0.081 h-!'. From eq. Al.1 this corresponds to a doubling time of
0.36 days. (Coincidentally, this is nearly the same surface doubling rate as was calculated for
South San Francisco Bay.)

The second approach again uses the Smith equation (eq. A1.14). We also use the result from
McBride (1992: Table 4), that for the Smith equation

2 . —1 Lo, max
= —sin (¥), where ¥ = ———— (A1.19)
Pr T '\/—2—
1+ lO,max
Equation A1.11 is then transformed to
26 .
pro = ps[ sin !} (¥) - r] (A1.20)

* For 1o,max >> 1, sin” (W) — sin”!(1) = g , and so eq. A1.20 collapses to eq. Al.12, as required.
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Note that for our Manukau Harbour data ¥ = 14.4/y/ 1+14.42 = 0.9976, so we compute that

pro = 0.191{[2x0.54xsin~1(0.9976)]/m — 0.1} = 0.079 h-!, corresponding to a doubling time
of 0.37 days. This is little different from the first approach.

From eq. A1.13 the minimum possible doubling time is 0.35 days.

Depth-averaged doubling time
To compute <py> we must substitute eqs A1.4 & A1.18 into the Jassby-Platt light function and
substitute the result into eq. A1.10. Once again, analytical solutions for the Jassby-Platt

equation cannot be found, and again we present two methods of overcoming this difficulty.$

The first is to use the nomographs of <p7> versus iy max for the Jassby-Platt equation
presented by McBride (1992, Fig. 5d). For g max = 14.4 and Z = 5.55 we get <pr> = 2.7.
Therefore eq. A1.10 gives <ur> = 0.191[(0.54x2.7)/5.55 — 0.1] = 0.031 h~!, corresponding
to a depth-averaged doubling time of 0.93 days—very similar to that obtained above for the
South San Francisco Bay doubling time averaged over the cuphotic depth (note that for
Manukau Harbour Z = 5.55, which is approximately the euphotic depth).

The second approach follows that of Platt & Sathyendranath (in press). They noted that
whereas models of daily water column photosynthesis give a nonlinear function of PAR (as the
nomographs in McBride 1992 demonstrate), field observations often show a linear dependence
on PAR (e.g., Cole & Cloern 1987, Cloern 1991b, Vant & Budd 1993). They resolved this
difference by noting that for values of PAR of practical interest, only a weak curvature actually
occurs in the model solutions. They then identified some simple linear functions relating <p7>
(their 1) versus Lo max (their I5,) for deep water (corresponding to {> 5). In particular for a
wide range of PAR (3 < 1y max < 20) they found <p7> = 1.23 + 0.09101tp max; for 3 < ipmax <
20, they found the more accurate approximation <p7> = 0.940 + 0.13901p max. A similar

approach is followed here for the Jassby-Platt equation.

We use the Z =5 curve on Fig. 5d of McBride (1992), because it corresponds to the water

depth for the Manukau Harbour, and also is little different from the euphotic depth. Selecting
data for that curve for 5 < 1y nax < 22, linear regression gives <p> = 1.563 + 0.0767 10 max
(adjusted r? = 0.95). Therefore, for iy max = 14.4, <pr> = 2.6, and so <uz> = 0.030 and the
depth-averaged doubling time is 0.97 days.

§ We have found an asymptotic series solution for the Smith equation (using eq. 14.346 of Spiegel 1968), but
its convergence is not satisfactory (it contains Bernoulli numbers which get very large for later terms in the
series). Platt ef al. (1990) present a series solution for the P-/ equation of Webb et al. (1974) (p=1-¢9 for
the infinite-depth case, which gives very similar results to those obtained with the Jassby-Platt and Smith
equations. They also present a very accurate 5-term polynomial approximation to it, and show how
photoinhibition may be included (i.e., using the P-I equation of Platt er al. 1980).
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This approximate approach gives results little different from that using the nomograph. Its

general form may therefore be of some use, i.e.,

/n(2) _
T = { 51563 + 0.07671g mu) ] ,'prov1ded that 5 <ty yax < 20 (A1.21)
s i

Z
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Appendix 2
FEE'S INCIDENT PAR CALCULATION PROCEDURE

Using Fee's terminology, the procedure for calculating the daily PAR variation at Hobsonville
on 8 February 1992 is as follows:

Physical data

8 = -36.8° ="LATITUDE",

d =139 = day number of year;

Ay = 366 = number of days in year;

¢ = -15.5153° = 23.45°sin[360°(284+39)/365] = declination of the earth;

¢ = 101.9865° = arccos[-tan(O)tan(¢)] = angle from due south of the sun at
sunset;

Aq = 815.8916 min = 8¢ = ""daylength", i.e., photoperiod;

k = 38.4658° = 360°d/A, = day angle;

8 = 1.0276 = 1.00011 + 0.034221 cos(k) + 0.001280 sin(k) —

—0.000719 cos(2k) + 0.000077 sin(2k), the square of the
earth's deviation from its mean distance from the sun;

0 373.4 mE m—2 min-! = solar constant.

The values of these variables are all fixed for a given site and time.

Empirical data

K, = 0.3608 ="ATMOS_EFFECT" = fraction of PAR at the top of the
atmosphere reaching the water surface, determined from the
inspected PAR maximum and Fee's "FITSOLAR' routine.

This is the only empirical variable that the user can adjust.

Incident PAR Formula
I = k,0© & {sin(¢)sin(6) + cos(¢)cos(H)cos[0.25°(+-A4/2)] } (A2.1)

where ¢ is time from sunrise in minutes (0 < t < ), and 1, is in mEinst m—2 min~!. Converting
tto time since midnight in hours (as on Fig. 4), converting ® to pEinst m—2 s-!, and
substituting the above values for «,, ©, &, ¢, 6 and A, into eq. A2.1 we obtain the formula

used to generate the Fee curve (a regular sinusoid) on Fig. 5:

Io(f) = 2307.35{0.1602 + 0.7716 cos[15(+—5.75)-101.9865] }, uEinst m—2 s-1.
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Appendix 3
BLEST DIFFERENCE EQUATIONS

Mass balances of phytoplankton (of concentration B) are applied to the control volumes shown
on the figure. The (constant) settling velocity is w;, and the specific benthic uptake rate is a.

Total flux =0

LI

. A
j=a| BT

z=H .;"(Area=A

o~
j H Tidal exchange
Ws
floor !

Total flux = AaBz _

i J=J & H

Each control volume has a centroid node, labelled j, and they all have horizontal surface area =

A and volume AAz. The mass balances are written for a time interval Af (= 71— 1),

An Eulerian frame of reference is used in the vertical direction, because the system is diffusion-
dominated (the settling velocity can be expected to be much lower than the vertical diffusion
velocity). In contrast, a Lagrangian frame of reference is used in the horizontal direction, to

allow for movement of the control volumes up and down the estuary as the tide ebbs and flows.
The mass balance equation for the general control volume j is thus:

mass in volume j at time #— mass in volume j at time #-!
= mass advected and diffused through the roof in time At
—mass advected and diffused through the floor in time Af
+ net mass produced/grazed/respired in the volume in time Az

— net mass lost by exchange with surrounding waters in time Af (A3.1)

The mass in a control volume at any time is taken as the volume times the concentration at the
centroid (i.e., mass; = AAzB)). The rate of advection of mass through the roof is taken as

Aw B0, and similarly for the floor. If we use a Fickian description of diffusion, the rate of
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diffusion of mass through the roof is [~<AK,(0B/9z)]00f, and similarly for the floor. To obtain
the mass advected or diffused through the roof or floor during At, the respective rates are
multiplied by Az and referred to some time level between 2 and ! (denoted by an asterisk).

Accordingly, the algebraic form of the mass balance equation for control volume j is:

ABJ'.’ Az — AB;'_IAZ = {AwB*At + [—AKZg—f *At }ro0f

. 0B,
~ {AwB"At + [-AK 5 1" At }rioor
+ A[S;f + GBg—o + gBSea/AIT]AZAt (A3.2)

where Afris the tidal cycle (from high tide to high tide) and S is the net internal rate of gain of

mass per unit control volume per unit time. Because S is first-order we have S = pB, where
p(z,1) is the net specific growth rate. From eq. 9 we see that p = u— G — g Atr.

It is now necessary to make three approximations. First, we use the time-weighting
approximation:

X*=wX"+®X™", suchthat 0<w<1land @=1- (A3.3)

where X denotes any of the quantities (B, d0B/dz, or S) to be evaluated at time level *. Second,

to evaluate B at the roof or floor we take the linear interpolation functions:

Broof = (Bj+ Bj1)/2 and Bfioor = (Bjy1 + Bj)/2 (A3.4)
Finally, to evaluate the derivatives we take:

(0B/02)r00f = (Bj— Bj-1)/Az and (9B/0z)igor = (Bj+1 — B))/Az (A3.5)

Substituting eqs. A3.3-A3.5 into eq. A3.2, noting that S = pB, and dividing by the control
volume (AAZ):

(-c/2—d"B?, + [1+ w(20" - p'ADHIB! + w(c/2-dHB!, =
_ J-1 J J J+l
@2+ 0" OB + [+ @(-20"" +p AN + @2+ o Bl
+ (GBg=o + EBgeal AtT)AL (A3.6)

for j =2,..., J-1, where ¢ (= w,At/Az) is the Courant number and o” (=Kg At/AZ2) is the grid

dispersion number.



42

This equation applies only to the interior control volumes (i.e., j = 2,..., J-1). For the top
control volume (j = 1) the surface boundary condition must be applied to its roof. Likewise,
for the bottom control volume (j =J) the bottom boundary condition must be applied to its

floor.

Surface boundary condition
This condition, i.e., ~AK,(dB/9z),-¢0 + (Aw;B),—o= 0, is incorporated into the difference
equation for the first control volume by setting the first term on the right-hand-side of eq. A3.2

to zero. The resulting equation is:

[1+ eX(c/2 + 0" — p{ADIB] + o(c/2-0"B) =
[1+@(-c2—d" +pl'AIB!" + @(—c/2 + 0" B}
+ [GBG-o + EBsed/ Atr]At (A3.7)

Bottom boundary condition
Here the total mass leaving the boundary through At is AaB;HAt. Accordingly, the equation

for control volume J is obtained by replacing the second term on the right-hand-side of eq.
A3.2 by AaB;At. In doing so, to be consistent with the linear interpolation approximations

made for interior control volumes (i.e., eq. A3.4), we use a linear extrapolation for B,y
B,.y=03B;—Bj_1)2 (A3.8)
The resulting equation for control volume J is:

(—c/2-0" ~ BB, + [1+(-c/2+ 0" +3f2-pjADIB] =
A2+ d +B2)B) |+ [1+@ci2- 0" -3B2+p ' AnB)!
+ [GBg—o + ngea/AtT]At (A3.9)

where 8= atAt/Az (a kind of benthic Courant number).

Calculating PAR at depth

Calculation of the specific phytoplankton growth rate at any time or depth, from eq. 3, requires
the value of the PAR ratio (t). Calculation of this ratio, from eq. 5, must account for the
nonlinear effect of self-shading. This nonlinearity is avoided in the numerical scheme by
evaluating B in the self shading term at the old time-level, n—1. Accordingly the BLEST
equations for the PAR ratio are:

(10)] = (1) yrpace €XPI—ky — kcB] /2] (A3.10)
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and
(0)] = ()] expl—ky— k(B + BI7)2] (A3.11)
for j = 2,..., J.

Assembling the scheme equations

For any time level the scheme (i.e., eqs. A3.6, A3.7 and A3.9) can be assembled into the
matrix form Ax = f, where x is a column vector of the unknowns (B{ B, ... B))T and f is a
column vector of the known (i.e., at the n—1 time level) right-hand-sides of the scheme
equations. A is a square (J x J) tridiagonal matrix containing the coefficients on the left-hand
sides of the scheme equations [e.g., for an interior control volume the subdiagonal, diagonal
and superdiagonal terms are: w(-c/2 — 0"), 1+ w(20" - pj'.’At), and w(c/2 — 0") respectively].
This equation may be solved very efficiently for Bj',' ( = 1,..,J) by a standard Gaussian
elimination algorithm (we used subroutine TRIDAG of Press et al. 1986). This algorithm is
stable so long as the matrix is diagonally dominant, generally requiring only that @ pj'?At <1

However, it is well-known that stability problems may arise for @ < 0.5.
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Appendix 4
TESTING THE MODEL'S ACCURACY

Testing is necessary to ensure that the model code is free from programming errors, and that it
produces results of acceptable accuracy. This takes three forms: examination of whether the
model conserves mass (of phytoplankton); the match between the model's predicted
concentrations and those obtained with an available analytical solution; and a simple exponential

growth bloom.

In the first two cases we are constrained to ignoring phytoplankton growth and losses (i.e., i
=G =£=0ineq. 9), because only then is mass preserved. Also, analytical results are
generally only available for this case. Although such testing ignores blooms, it is nevertheless
very instructive because the major approximation errors may be expected to occur in the

modelling of advection, dispersion and the incorporation of boundary conditions.

We used results at the end of the 14th day of simulation, thus allowing sufficient time for any
errors to become obvious. Water depth was set at H = 10 m, time-step At = 0.1 d, and grid
distance interval Az = 0.1 m. Settling velocity and the vertical mixing coefficient were varied
from w; = 0-0.5 m d-! and K, = 0-5 m2 d-! respectively, following values used by Cloern
(1991a).

Mass conservation tests

In the mass conservation tests the benthic flux was set to zero (@ = 0). An algebraic analysis
for this case shows that BLEST should conserve mass exactly (see Appendix 5). (While the
concentrations predicted by numerical schemes are indeed approximate, errors in the overall
mass conservation cannot be tolerated.) The four possible cases are shown in Table A4.1,
along with the computed mass balance errors. All tests used an arbitrary initial concentration of
B; = 500 mg m3.

TABLE A4.1 Mass balance test cases and errors

Data
Case ws, K8 w# Mass balance error
|(a) Stagnant water 0,0 0.5 0
I(b) Pure diffusion 0,5 0.5 4 x 10-16
(c) Pure advection 0.5,0 0.5, 1.0 2x 1015
{(d) Advection-diffusion 0.5,5 0.5 3x 1014

§ corresponding to ¢ = 0.5 (Courant no.), o = 50 (dispersion no.)
#o= time-weight, dimensionless
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The table shows that any mass balance error is minimal. It is the result of rounding errors in
the way the computer stores numbers. The actual concentrations calculated at cell floors are

given on Fig. A4.1.

0 ] ] I l T ] I T w ] : T T 1 T T |
- | Analytical soln. d | () & (D)
for case (c) !
N () =05
ST = (©), = 1.0[1
10 TN N N AR = e —»
-800 -400 800 1200

Figure A4.1 Mass conservation tests
[data given on Table A4.1, circles show analytical solution for case (d)]

For cases (a) and (b) the model preserves the initial condition, as expected. Case (c) (pure
advection) presents a severe test to any numerical scheme, because of the presence of two sharp
fronts of concentration. The first is at 7 m depth, where B jumps from 0 to 500 mg m-3, and
the second is at the bed (at 10 m), where rapid accumulation of B occurs. Wildly oscillatory
(but stable) results are obtained, with @ = 0.5 being generally more noisy than @ = 1.0 (0 =
0.5 is "time-centring", as in the Crank-Nicolson scheme used by Cloern 1991a, w = 1 gives the
"fully-implicit" scheme). Both time-weightings give very large concentrations (B =~ 134,500)
at the bed (where the analytical solution becomes infinite). Note that these are cell floor values
which are obtained by interpolation between nodal values (eq. A3.4), and extrapolation to the
bed (eq. A3.8). (The nodal concentrations oscillate with an amplitude that increases almost
linearly fromOat Z=2.8 mto 72 750 at Z=9.95 m.)

It is well-known that the Crank-Nicolson scheme is oscillatory when modelling pure advection
of steep concentration gradients (e.g., Gray and Pinder 1976). It is less well-known that it,
and the fully-implicit scheme, become even more oscillatory in the presence of a fixed steep

concentration gradient (i.e., at the bed) (see also McBride 1985).
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Case (c) is of course not physically realistic, because it ignores dispersion. Case (d) shows
that when modest dispersion is included the results obtained contain no noise. These results

are also very accurate (as discussed below).

Analytical solution tests

The noisy solutions obtained near the bed in the pure advection case (c) above are the result of
attempting to resolve a huge concentration gradient. This gradient can be removed by allowing
phytoplankton to pass through the bed at the same rate that it is advected downward. This is
achieved by setting the specific benthic filtering rate to the settling velocity, i.e., & = w; (this
equates the Courant numbers for the water and the bed, i.e., ¢ = B). The (step-function)

analytical solution is known for this case, and is shown with the BLEST results on Fig. A4.2.

—————
-

_____
~Titaeaea

Lénz_ilytical solution ]
] O | | 1 l ——

-200 0 200 400 600
B

Figure A4.2 Analytical and BLEST solutions for pure advection
(a=w,=05md"',K,=0m?d")

These results are now correct at the bed. They do show some smearing of the sharp front, and
the Crank-Nicolson scheme (i.e., @ = 0.5) results also show oscillations above it. These are as
expected from these schemes. However, as we have noted, this is a severe test of the scheme,
because some dispersion is always present. An analytical solution for the appropriate case
including dispersion has been found. This considers the advection/dispersion of phytoplankton
with a nonzero initial condition subject to there being no mass flux through the water surface,
and no gradient of phytoplankton at the bed (so that there is only advective flux through the

bed). The equations for this problem are:
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oB oB d’B
or TWsy, =K, v (A4.1)
with the initial condition B(z,0) = B; and the boundary conditions (w,B — K, gf ) = 0 and

( 3z )Z =0 An approximate, but nevertheless accurate analytical solution is (Brenner 1962):

B _ L rf{ [P Pz T)] /4PT Pz PIT
B,
- %[1 +4P(Z + T)] ¥ erfc|:., / % (Z+ T)} (A4.2)

where Z = z/H is dimensionless depth, T = wt/H is dimensionless time, P = wH/(4K,) is the
2 ["e-8 dg). This

ﬁ

solution was implemented using ERFC and associated functions in Press et al. (1986).

Péclet number, and erfc is the complementary error function [erfc(x) =

Fig. A4.3 demonstrates a comparison between the numerical solution obtained by the BLEST
code (using w = 0.5) and the analytical solution obtained from eq. A4.2. The input data were
selected so that there is a negligible gradient at the bed—if not eq. A4.2 would be invalid. The
agreement between the two solutions is excellent. Inspection of the data files show that for

these input data the difference between the two solutions is never more than 0.13%.

100 200 300 400 500
B

Figure A4.3 Analytical & BLEST advection/dispersion solutions
(a=w,=0.lmd',K.=01m?d")
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Finally, note that Fig. A4.1 (case d) shows similarly accurate solutions for the case where no
: ; . i oB

mass is permitted to enter or leave either boundary (i.e., wyB — K, T Oatz=0and H). The
L

analytical solution for this case seems to be even less known than that of Brenner (1962). It
was derived by Mason & Weaver (1924, their eq. 14'), and is:

. ) 2.2,
.Bg- _ :;) . 16}‘2neP(2Z_T)z AT, ic—lf(ul)(sir; mz.nfj 2nmAcos mnZz) (A4.3)
i Me"=1) — (1 +4n°m°A°)

with P, T and Z defined as for eq. A4.2, and A = # 8 The top sign (in the X term) is taken if

m is odd, the lower is taken if m is even. Two terms are generally sufficient, unless ¢ and K,
are both small.

Bloom tests

Here vertical settling and dispersion and benthic flux were set to zero, and the source term was
set to a constant value, pAf = 0.1Az. Then after 14 days the analytical solution is B = 500e*!4
=2027.59998. Using double precision in the code we obtained extremely accurate results for a
time-weight @ = 0.5 (result 2027.62364). For w = 0.0 or 1.0 the results were a little less
accurate (2013.55 and 2041.94). This is to be expected, as we can show that w = 0.5
corresponds to a second-order accurate Padé approximant for the exponential function (e.g.,
Varga 1962), whereas other values of @ are only first-order accurate.

Which time weight?

From the above, @ = 1.0 is the most accurate if steep fronts of concentration are present,
whereas @ = 0.5 is the most accurate for a bloom. As steep fronts are not anticipated, we use
@ =0.5.

§ There are two typographical errors in Mason & Weaver's paper.
(i) In their eq. 15 they define y = Lx (equivalent to Z = Hz in our nomenclature): it should be y = x/L (i.e.,
Z = z/H, as defined for our eq. A4.2).
(i1) There is a minus sign missing from the first summed exponential in their dimensional solution (eq. 14).
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Appendix 5
MASS CONSERVATION OF NUMERICAL SCHEMES

BLEST control-velume scheme

Nodes (j =1, ..., J) are placed at the centroids of surface
control volumes, so there are no nodes at the
; . . ® j =
boundaries. Boundary conditions are incorporated j=1
into the scheme by prescribing the mass-flux through A
< @ =
the roof of the 15t control-volume, and through the j=2
floor of the Jth control-volume. °
°
. . .
Take the case of a conservative solute, with zero mass-
transport through the estuary bed (sou=G=a=§&= 1
@ J=J-
0). The mass in the water column at one time level
should be exactly the same as at the previous level,
. ® j=J
i.e.,
bed

M= M"! (A5.1)

This must be true for any values of vertical diffusivity (K,) and settling velocity (wy). In our
control-volume scheme this is guaranteed. To see this, note that

M" = EAB;AZ = Emj’? (A5.2)

where X denotes summation from j =1 toJ. We can summarise eqs. A2.1 and A2.2 as:

mjn - m;z_l = (mj):oof - (mj):'(loor (A5.3)
and

(mj)ﬂoor = (mj"'l)roof (A54)
Therefore

Zmf = Zm! ! 4 (m)r 0 = (MDpoor (AS.5)

All internal fluxes cancel exactly, as required. Also, our boundary conditions specify that
(m]);kOof = (m,);;oor = 0. Hence eq. A5.5 collapses to eq. AS5.1, and mass conservation is

satisfied exactly.
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Cloern's finite difference scheme

In this scheme (described briefly in Cloern 1991a), surface ®

nodes are placed at the boundaries (i = 1 and i = I). il

For the internal nodes (i = 2, ..., I-1) the scheme is Az { ® a

identical to the time-centred control-volume scheme =2

(i.e., eq. A3.6 with w = 1/2, and j =i). However, °

boundary conditions were applied in an ad hoc way, ¢

directly to the boundary nodes, without requiring mass °

conservation in the half volumes containing those - isT-1

nodes. As a result the whole scheme falsifies mass.

We show this as follows. i=1
bed ®

The mass in the water column at time level 7 is given

by:

M" = Sml 4o+ o (A5.6)

where X' signifies summation over internal nodes, i = 2, ..., I-1. Therefore, using the
properties of the control-volume scheme, as in eq. AS.5:
Mi=3 n-1 N * l n l n
=X'm;  + (M2)oor — MDpoor + MMy +3m, (AS5.T)

Now define the following volumes: V = AAz, W = Aw,At, D" = AK:At/Az, F = AaAt. The

approximations used for the 2"d and 34 right-hand-side terms in eq. A5.7 are

(my) o= % (BT+Bj+B}'+B; ") - %[D"(B;—B':) + D" (B BT (A5.8)
* E n n, pn-l n—1 l n,ph ph n—1,,n—1 n—1
(M1-Dgoor =4 (Br_+BJ+B} | +B] ) —5[D"(B]-B}_ )+ D" ' B} '-B} )1 (A5.9)

To approximate the last two terms in eq. A5.7 it is appropriate to use

1

Smy =5 Bj (A5.10)
%m;. =%37 (A5.11)

Therefore the mass balance (eq. AS.7) becomes:
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M" = E'm?_l +
& (W+2D"2V)B7 + (W-2D"B] + (W+2D" B! + (W-2D" )51 _
(W+2D"Bj. | — (W-2D"-2V)B} — (W+2D" "B/} - (W-2D" "Bl  (A5.12)

We want the first right-hand-side term in this equation to be M"_]—any residual terms would
quantify the mass balance error. To do this we use the boundary condition formulations used
by Cloern to get rid of the terms BT and B;', and collect up the appropriate coefficients.

For the first boundary condition [i.e., (K,0B/0z — w;B),~¢ = 0] Cloern used:

UD"(BS-BY) + D" By B - (8748 ) =0 (A5.13)
from which
B = [D"B} - W+D" HB" ' + D™ 'BY )y (Ww+D" (A5.14)
1 2 | 2

For the bottom boundary condition [i.e., (K,0B/dz — w,B),.g = —aB,_y] Cloern used
%[D"(B;'—B;'_]) +D"\(B-BI 1 - % (B +B] ) =- ’25 (B)+B]") (A5.15)

Note that the advective term (3™ group of terms on the left-hand-side) was approximated at
node /-1, not at the boundary node (I), presumably because w; = 0 at the boundary. (This

kind of arbitrariness is avoided in a control-volume approach.)

From eq. AS.15
B} = [(W+D"B} | + W+D" "B/~ — (F+D" "B ')/(F+D") (A5.16)

We can obtain the desired result by: (i) substituting eqs. A5.14 & A5.16 into eq. A5.12, (ii)
14 14

noting from egs. AS.6, A5.10 & AS.11 that M = 2'm! + 2 BT + B}, and (iii)

setting F = 0 (because we set ot = 0). The result is:
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[ 2vD"+W? AD(W=2WV)\_,_
—n]B'z'— (V+(—n)jB" Ly
4W+D") 4(W+D")

/ n—| " n 2
2VD WW+AD B 2VIiW+D" )-W
ik )]Bg e [ : ) }87_1 =

\ 4(W+D") 4p"
ADW=2VY\. ., [ 2Vv(W+D™ " )-W(W-AD) | .,
V+_4N_)B’; + [ pror Bl (A5.17)

where AD = D" — D', The final six terms thus comprise a mass balance error. Note that for
pure diffusion (W = 0) and constant diffusivity (D" = D", so AD = 0) we get

M= M +% [(B5-2B7'+By ") + (B) ,—2B} '+B; ] (A5.18)

For a uniform initial condition the bracketed term = O algebraically. However numerical tests
show that this difference equation magnifies rounding errors, so that mass is falsified even for

pure diffusion.
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