Fitting hidden semi-Markov models

John Sansom
P. J. Thomson

NIWA Technical Report 77
ISSN 1174-2631
2000



Fitting hidden semi-Markov models

John Sansom
P. J. Thomson*

*Statistics Research Associates Ltd.
PO Box 12 649
Wellington

NIWA Technical Report 77
2000



Published by NIWA
Wellington
2000

Inquiries to:
Publication Services, NIWA,
PO Box 14-901, Wellington, New Zealand

ISSN 1174-2631
ISBN 0-478-23202-0

© NIWA 2000

Citation: Sansom, J. & Thomson, P. J. 2000:
Fitting hidden semi-Markov models.
NIWA Technical Report 77. 38 p.

The National Institute of Water and Atmospheric Research
is New Zealand'’s leading provider
of atmospheric, marine,
and freshwater science

Visit NIWA’s website at http://www.niwa.cri.nz



Contents

N 07 - ot O 5
{38 o6 AT 5o ) s R 5
Outline of the hidden semi-Markov model .......... ... i 7
Likelihood of the model . ... . . e e 8
EM algorithm . ..o e 10
Maximisation formulae. . ... ..o i e 12
Probability formulae ......... o 14
Censoring and truncation ... ..ottt it et e 17
Reduced models. .. .oonn i e e 19
Sl . . et e e e e 21
Formulae using scaled probabilities. ... ... e 22
Formulae for re-estimation of observation distribution parameters......................... 26
Viterbi algorithm .. ..o 27
SN =0 =% 1oLt P 28

A DDEIAIX .ttt e e e 30






Abstract

Sansom, J. & Thomson, P.J. 2000: Fitting hidden semi-Markov models.
NIWA Technical Report 77. 38 p.

The hidden semi-Markov model is described, its likelihood derived, and the Expectation Maximisation
algorithm is applied to the likelihood to derive formulae for estimating the model’s parameters. These
fall into three groups. Firstly, those of the observations distributions which are assumed to be normal
or can be closely approximated as a mixture of normals. The second group are those of the state dwell
time distributions, and results for a number of different distributions are given with, in particular, a
distribution comprising a mixture with disjoint ranges being offered as a flexible choice. Finally, the
transition matrix controlling the changing of states is treated as non-parameterised with all its elements
independent of each other apart from the constraint that the matrix’s rows must sum to unity.

The model is extended to deal with a censored dataset in which for some observations the value is ignored
and only the fact that it occurred is retained. The form of censoring dealt with is where observations
below a threshold value for univariate observations are ignored or, for bivariate observations, those below
or to the left of a line across the plane of the variates are ignored. Expressions for the mean and variance
of the observations in the censored area, which are needed for fitting the model to censored data, are given
for the normal case. Also it is shown that the model contains both the more common hidden Markov
model and the conventional mixture model. The former requires the state dwell time distributions to be
geometric and the latter, in addition to geometric dwell times, requires a special parameterisation of the
transition matrix.

The parameter estimation formulae all include probabilities which, for a sufficiently large dataset, can
be so small that they can no longer be represented within a computer. The application of suitable
scaling is described and the estimation formulae recast in terms of the scaled probabilities. Some ideas
regarding the practical computation of the scaled probabilities are also given. Finally, an implementation
of the Viterbi algorithm is described to show how, after estimating the model parameters, a state can be
attributed to each observation.

Introduction

The behaviour of a set of data may be understood by fitting a model to it. Models can take many
forms but are restricted in this report to those suitable for data generated by a stochastic process
which is a collection of random variables indexed by time and specified by an appropriate set of
parameters. The estimation of the parameters for a particular model from the data constitutes
the model fitting process. From the fitted model, inferences and predictions of the behaviour of
the process can then be made.

The stochastic models considered in this report are those in which dependence from one obser-
vation to the next in the time ordered sequence can be dealt with by assuming a Markovian
structure. There are many books which give details of the theory of Markov chains and Markov
processes, for example, Cox & Miller (1965) and Karlin & Taylor (1975). For each observation
in a Markov process, the state associated with the next observation depends only on the state of
the current observation and is independent of all previous states. Thus the history of the process
does not affect the next transition except through the current state. For each ordered pair of
states a transition probability exists and needs to be estimated as part of the fitting procedure.
Together these probabilities constitute the transition probability matrix.



A consequence of adopting a simple Markov chain structure for the observations is that the
lengths of sequences of self-transitions, or the dwell times in a particular state, have a geometric
distribution. A generalisation away from this can be made by fitting the observed dwell times
to a chosen distribution. This modification is made to the models considered in this report and
gives what is termed a semi-Markov structure.

The final aspect of the models considered in this report is the qualification hidden. For the data
to hand it is supposed that, with the sequence of observations, there is associated an underlying
but unobserved semi-Markov process whose state defines the particular distribution for each
observation. Then not knowing what state was current when each observation was gathered
gives rise to the hidden semi-Markov model (HSMM). Essentially, the hidden states are a way of
describing the serial dependence through the data, but it would often be hoped that the states
could be associated with some physically significant differences that exist.

Baum & Petrie (1966) founded the theory of hidden Markov models (HMMs) and subsequently
the Baum-Welch algorithm was developed. This technique is more generally recognised as the
Expectation-Maximisation (EM) algorithm as described by Dempster et al. (1977). Further
development during the 1980s of HMMs was motivated by efforts to automate speech recognition
(Levinson et al. 1983, Juang 1984) culminating in the review paper by Rabiner (1989). During
the 1990s the books by Elliot et al. (1995) and MacDonald & Zucchini (1997) became available
and applications in meteorology were made by Zucchini & Guttorp (1991) and Sansom (1998,
1999).

The extension to the HSMM was made by Ferguson (1980) and briefly reviewed by Rabiner
(1989). However, Ferguson’s important and seminal work is not easy to obtain — it is in a
relatively obscure conference proceedings and is somewhat succinct — and Rabiner’s review is
a little too brief to cover all the issues. Thus part of the motivation for this report was to place
the theory of HSMMs in a more accessible and explicit form, particularly for meteorological and
environmental scientists. The remaining motivation was to extend what had been done into a
more general framework which includes methods for dealing with censored datasets, HMMs, and
conventional mixture models.

A formal outline of the HSMM is given and its likelihood calculated. Since the state information
is missing the likelihood calculation involves the careful, and sometimes subtle, use of the EM
algorithm. Subsequent sections show how the likelihood can be maximised and re-estimation
formulae for the model parameters derived. Some particular cases for the dwell time distribution
are considered. Various useful probabilities and the formulae for calculating them are defined
(derivations are given in Appendix 1). The theory is extended to cover the application to
censored datasets and it is shown that the HMM and conventional mixture models are special
cases of the HSMM. It is shown why scaling is necessary in the recursive procedures used and
how it can be achieved. Formulae suitable for direct implementation in a computer program
are given along with the formulae for re-estimation of the observation distribution parameters.
Finally the Viterbi algorithm is described.



Outline of the hidden semi-Markov model

The real-valued, continuous vector observations O; (¢t = 1,...,T) are available and, without
loss of generality, are considered to be normally distributed. Their time order is known and it
is supposed that with each observation in the sequence a label could be associated to denote in
which state the system was when the observation was taken. However, these state labels (i.e.,
Q:t=1,...,T) are not part of the observation: they are unknown and so the states are hidden.
Thus the system, which can be in a number of states Si,..., Sy say, dwells in a state (i.e.,
Qi1 = Q) or makes a transition between states (i.e., Qi+1 # Q:¢) with each observation but
which state (or states) is (or are) concerned is not explicitly known. Also it is assumed that the
number of states is known or can be estimated by fitting the model for various N and choosing
one by considering the likelihoods of the different models.

Given the state information, the observations are assumed independent with distributions
P(x < 0y < x +dx{Q = q) = by, (x]|Og,)dx

or, as only knowing @) is relevant to Oy,
P(x < O < x4+ dx|Q: = q:) = by, (x]0g,)dx

where ©,, represents the parameters of the distribution for the observations pertaining to the
state indicated by ¢;. The stochastic process generating the Q; is given by a finite Markov chain
for the transitions between different states and by state dependent duration distributions for the
dwell times within states. Associated with the Markov chain is a transition probability matrix
A= {aij} with

N
Y a;=1(G=1,...,N)
Jj=1

and since the dwell times, d, have their own distributions

{ P(Qiy1 =14Q:=13) 1#]
0

a;; = i = J
self-transitions are forbidden. If they were allowed, the model would be an HMM rather than
an HSMM implying the dwell time in a particular state is geometrically distributed. However,

a distribution for the dwells can be defined from the set of probabilities

pa(i) =Pgr=1) i=1,...,N;d=1,2,...,T;t <7 < t+d)

Given that the Markov chain is irreducible — every state is accessible from every other — is
positive recurrent — every state will be re-visited within finite time — and is aperiodic — no
regular cycling occurs between states — then the chain has a steady state distribution = where
the row vector m = (my, ..., mn) satisfies

TA=T7

and, for example, 7T for large enough T is the expected number of visits to S;. Also, it can be
reasonably assumed that for a long-running process the probabilities of the state that is initially
observed are given by 7.



Note that the state labels Q; are a function of the bivariate stochastic process (I, Dg) (k =
1,2,...) where k indexes the state visits so I is the state visited on the kth visit and Dy, is the
duration of that kth visit. The relationship between the Q; and the (I, Dy) is

g = I (t:l,...,Dl)
@ = I (t=D1+1,...,D1+ Dy)

@ = In (t=T-Dg,...,T)

where R is the number of state visits up to time T'. The Ij constitute a stationary finite Markov
chain with probability matrix A and the probability of an observed sequence of states is

P(Iy=11,Dy=dy,..., I =1, Dy = dp) = m;,pa, (i1) [ ] aiy_,inPa (i)
k=2
which forms part of the likelihood for the complete data i.e., (O, Q:)' (t = 1,...,T). The
derivation of this likelihood and its maximisation are the major problems in fitting HSMMs to a
dataset. A further problem dealt with in this report is the fixing of a label to each observation,
i.e., finding ¢; (t=1,...,T) with each ¢; being one of the labels 1,..., N.

Likelihood of the model

It is assumed that the available (incomplete) data are Oy, ..., O and are taken from a process
such that both O, and O are state boundaries, i.e., a state started at ¢t = 1 and Q7 # Qr41.
Thus in terms of the generating process

T=Di+---+Dg

Depending on how the data collection process is viewed, either or both of T' and R are random
variables.

In frequentist terms, the data to hand could be conceived as one realisation of many replications
where R was fixed — although typically unknown — and 7 was random. If T is taken to be the
first state boundary after a given To then both T and R are random. Alternatively, T could be
fixed with R random in which case the conditional distributions of the Dy become dependent.
In Bayesian terms, R could be allowed to be random, with a given prior, and then T and the
data generated.

In the sequel R is assumed to be a fixed, but unknown, constant. Indeed, it is R rather than
T that indexes the information collection process and provides a measure of the accuracies of
estimations. Thus the likelihood of the complete data is now

P(Il:il,Dl:dl,...,Ir:ir,D,.:d,.,ol201,...,0T:0T'R:T‘)
PO=oll=i,D=d,R=r)PI=iD=d|R=r)
T r

H P(Ot = OtIQt = qt)ﬂ"hpdl (7’1) H Qip_yipPdy, (Y'k)
t=1 k=2

l

Il

where the relationship between the @ and the (Ix, Di) has been exploited. Thus, in terms of
random variables the log-likelihood is

T
log L = Zlog bq,(0:|©q,) + log P(1, D, R)

t=1



where for Gaussian observations

1 1 -
log th(Oi|®Qt) = D) log ‘ZQtI - '2_(015 - /LQt)/EQi(Ot - H‘Qt)
and

_ ) logmy + Sk, logar, 1 + X5 logpp, (k) R>1
IOgP(IjD;R)_ { logﬂ.Il +10ng1(I1) R=1

The first summation in the second term on the right hand side above can be rewritten as follows

R
Z Iog an._ .1, = log anr + log ann + -+ 1Og OIp_1In
k=2

= logaja X (No. of transitions from S; to Sg) + - -+

logan_1n~ X (No. of transitions from Sy_; to Sy)
N N

= Z Zlog aij X (No. of transitions from S; to S;)

=1 j=1
Now by defining the indicator variable
wi={ ) Gzign =

0 otherwise

it can be seen that the number of transitions from S; to S; up to time 7' is

T-1
Z Nt(i1 ])
t=1
thus
R N N T-1
Z log af._ I, = Z Z log a;; Z Nt(i,j)
k=2 =1 j=1 t=1
The other summation can be rewritten as follows

R

> logpp,(It) = logpp,(I1)+logpp,(Iz) + - - - +log ppy (Ir)
k=1

= log p1(S1) X (No. of visits to S; that had duration 1)+ -+
log pr(Sn) x (No. of visits to Sy that had duration T')
N T
= Z Zlog pd(%) X (No. of visits to S; that had duration d)
i=1d=1

Note that the summation over d was terminated at T since it is given that a state ends at T
and so the maximum possible duration of a state is T. Now by defining the indicator variable

.~} 1 Q¢ =rt,statein visit of duration d
M(i, d) = { 0 otherwise

it can be seen that the number of visits to state ¢ that have duration d is
1 T
E Z Mt(i) d)
t=1
thus

R N T
> logpp, (Ix) = Y Y log pa(i)

k=1 i=1d=1

aul -

T
Z M,(i,d)



EM algorithm

The model’s log-likelihood cannot be maximised with respect to A etc because the data are
incomplete as only the O; are known and not the (I, D). However, the expected value of the
log-likelihood can be found (E-step of EM algorithm) using a “best guess” for A etc and then
this expected value can be maximised (M-step) to form a new best guess and so on. Now, using
the subscript zero to denote expectations or probabilities evaluated with respect to the true
model or, in the case of the EM algorithm, an approximation to the true model then

EO{log LC|01: o '1OT1 QT+1 36 QT} =

N T
Z Zlog bz(ot'@z)P(Qt = Z.}()1) ., Or, QT+1 7£ QT)

=1 t=1
+Eo(log P(I, D, R)|Oy,...,0r,Qr 11 # QT)

where
EO{log P(L D) R)|011 sy OT: QT+1 '7'é QT}
N
=Y logmP(I; =0y, ...,07,Qr41 # Qr)
=1
N
+Ep Zloga’zj ZNt ,7)|01,...,0r,Qr41 # QT
izj I
N T 1 T
+E0{ Zlogpd EZ (’L d)lol)"'JOT)QT+1 #QT}
1=1d=1 t=1
Now define
’Yt(zij) = EO{Nt(iaj)lola ceey 0T1QT+1 7é QT}
= Po(Qt =14,Qey1=3|01,...,07,Qr41 # QT)
and
5t(i1 d) = EO{Mt(i; d)lola .. ‘70T) QT+1 # QT}
= Po(Q: = i,state in visit of duration d|O4,...,O0r,Qr4+1 # Qr)
and

Y¢(3) = P(Q¢ = i|Oy,...,0r1,QT41 # Q1)
It can be noted that

N

Z'Yt(i:j) = Ye41(7)
'L;rl

Z:’Yt("a]) = 'Yt(z)

N
Z: 7(i) = 1

10



Thus
EO{IOg P(L D) R)loh ey OT) QT-H # QT}

N
— ZIOngP(Ql = ilol) .. .,OT,QT—I—I 7é QT)

i=1
N N T-1
+ 2 Zloga‘u Z’Yt(zij)
:;] j=1 t=1
N T 1 T
+ Z Z logpd(i)z Z 8:(1,d)
i=1d=1 t=1
N
- Z M1 (7’) log T
=1
N N /T-1
+ 22 ( vt(m)) log a;;
:;J =1 \t=1

Finally
Eof{log Lc|Oy,...,07,Qr41 #QT} =

N T
3> >0 w(i) (3 o8 1% - 500 - )T (04 - ) )

=1t=1

-,

N N

N (T-
+Z’yl(i) logm; + ; Z ( yt(i,j)) log a;;

1 = g=1 t=
i#tj 7

+

N T (4T
> (Ez&(i,d)) log pa(7) (1)
i=1d=1 t=1

1=1

and it is this expression that must be maximised with respect to the parameters.

The EM algorithm is applied as follows.

1. Guess some initial values for the ©;, a;; and pg(%).
2. Using the current values of a;; and pg(%) calculate the v¢(7,7) and &(¢, 7).
3. Find the ©;, a;; and pq(7) that maximise (1) for the calculated (i, 7) and 6(3, 7).

4. Using the new values of ©;, a;; and pg4(%) each time repeat steps 2 and 3 until convergence
is obtained.

11



Maximisation formulae

Maximising (1) with respect to 7; and a;; yields

N
i = 71(’5)/2’Yl(i)=71(i) (t=1,...,N)

~ Z:tr——.—ll 7t(7'1]) . . .
aij; = A — (i,57=1,...,N;i#7) (2)
2=t Zt:ll V(% 7) ,
This assumes that the Markov chain does not start from its stationary distribution but if the
contrary were assumed then the optimisation is more difficult (Billingsley 1961) However, the
term I, (i) log7; in this case is an asymptotically negligible component of (1) and can be
ignored and the #; are then those that satisfy

TA =7

Maximising (1) with respect to the parameters of the duration distributions requires the max-
imisation of

T
3 %Ad(i) logpa(i) (6=1,...,N) (3)
d=1

where r
Ag(i) = 8(i,d)
t=1

and so the specific form of p4(i) must be known to complete the maximisation. Some examples
follow.

Non-parametric

Here the dwells have a discrete distribution over the range 1,...,D and the probabilities
pa(i)(d=1,..., D) must be estimated with the constraint that

D

D opa(i)=1

d=1

optimising yields
1 .
. 7Ad(9)
Ba(t) = g
Z(Ii)zl %Ad(']:)

Geometric

Here
pa(d) = (1—p)*'pi (d=1,2,..)

and (3) becomes
T
1 .
> Aa(i) (logpi + (d - 1) log(1 — i)
d=1

optimising yields
- Zg:l éAd(z)
E{(Il‘:l Ad(z)

12



Poisson

Here
: o AN
pa(i) = e '(d— o (d=1,2,..)
and (3) becomes
T
> %Ad(i) (=X + (d = 1) log ); — log(d — 1))
d=1

optimising yields

S Ld=Aa(l)
Y=t 3A4(1)

Mixture of geometrics

Here
pa(i) = ¢pi(1 — p)* '+ (1 - P)ai(l — @)*' (d=1,2,...)
where 0 < p;,¢: <1 and 0 < ¢ < 1. Now (3) becomes

T

> g0l log (4pi(1 - )% + (1 - Bas(1 - ")

d=1

optimising yields the following expressions

. i lAaz(i) = pi zT: lAd(i (d-1)(1 - ;)42

pi d=1 d d=1 d pd(z)
Ly 1 L (= D — g
— > =Aq(t) = @) A4 .
D Y

1—p 1—g¢q; T 1 . T 1 .
<¢ +(1-¢)— ) D ZAG(i) = SAq(i)(d - 1)
i q; d=1 d d=1 d

The last expression can be re-arranged to give an expression for ¢ which can then be used
in the first two expressions to eliminate ¢ from pg(z). These two equations can only be solved
numerically for p; and ¢; but for the EM algorithm it is preferable if simple analytic solutions exist
since a solution is required for every iteration of the algorithm. Thus if a mixture of geometrics
was chosen simply to fit a distribution, which could not be fitted by any simple parametric form,
rather than for a particular physical reason, then, another more flexible distribution which does
admit analytic solutions would be more appropriate. The mixed-range distribution below is
suggested as a means of providing such a distribution.

Mixed range distributions

Consider
2d(1) = Prpir(d; 0k) (d € Di;k=1,...,m) (4)

where the Dy, are disjoint sets of positive integers

Dy ={dg-1,dp—1 + 1,...,dr — 1} (k:l,...,m)

13



with 1 =do < dy < --- < dm-1 <T and d,, = c0. Moreover, 0 < ¢, < 1 with 372, ¢ = 1 and
the pir(d; 0r) are discrete probability functions on Dy, with parameters 6 so that

> pi(d; ) =1

deDk

Thus (4) combines together discrete distributions with disjoint ranges to make one flexible
probability function; it is a mixture of distributions with disjoint ranges. For example, with
m = 2 and

pi1(d;01) = pa(¢) (d=1,...,D-1)
pi(d;8s) = (1-p)pd P (d=D,..)

i.e., the first D — 1 probabilities are “non-parametric” while the tail of the distribution is geo-
metric. Now, in the general case here (3) becomes

m 1 ‘
>N EAd(i)(Ingﬁk-HogPik(d; 0r))
k=1deD

and optimising this by differentiating with respect to ¢ under the constraint that Y 5> ; ¢p = 1

yields

7 EdEDk éAd(z) =

tr=""F 5 (k=1,...,m)
Zd:l EAd(’L)

and with respect to 6 5
1 .
deDy, k

and suitable p;(d; 0x) should be selected to ensure simple analytic solutions exist for all k.
Returning to the example above

o gpati (d=1,...,D—1)
pa(i) = { (1pd—( qz)S)(l - 1) Pp; (d> D)

where ZdD:_ll p4(i) = 1 and the optimisation yields
304(2)
Yda ah(i)
S > P TV0)
" Tiop(d-D+1)3A4(0)

Pa(1)

with D

Yo 384()

Y= 384(1)

An alternative would be to take D; = {¢} (i=1,...,D — 1) i.e., m = D rather than m = 2 and
the ¢; become equivalent to the pg(3).

&:

Probability formulae

The estimation of A and the $4(3) is made through 7,(4, 7) and Ag(i) while the estimation of ©;
requires ;(¢). These probabilities were defined in the last section but before deriving expressions
for them, a few other probabilities will be defined and expressions for their evaluation given from
derivations given in the appendix.

14



Definition of a(7)

This is the probability of the occurrence of the first ¢ observations with the last one being the
last of a sequence from S; i.e., define

ai(i) = P(O1,...,0¢, Q¢ = i, Qty1 # 1)

which holds for ¢ = 1,...,T but can be extended as shown for ¢ < 0 so that a;_4(j) is defined
for all d

Result 1
N o t
SN wa(f)ejiva(i) ] b6:i(0,) 0<t<T
a(i) = { i=ld=1 s=t—d+1 5
i)=1 7 . 5
0 t<0

where 7 is the stationary distribution of the Markov chain given by mA = w. Also it can be

noted that
N N
Y aol(f)asi =) mia; =m
j:l j:l

Definition of a;(z)

This is the probability of the occurrence of the first ¢ observations with a change to S; starting
at £+ 1 i.e., define

a:(z) = P(Ol’ oo 04, Q4 # i:QH—l = 'L)
which holds for t = 1,...,T — 1 but not for ¢t = T since Q741 is not available. As for oy(7) its
range can be extended as shown for £ < 0 so that of ,(7) is defined for all d

Result 2
N o t
Z Zat d(] Qji Pd .7) H bj(oa) 0<t<T
a; (i) = J=ld=1 s=t—d—+1 (6)
5 t=0
0 t<0

The following relationships hold between oy (%) and «; (7)

Result 3

G-Q*
=

Il
M=

a(J7)aj: (7)

.
1

t

ali) = Y oia(pa(i) [[ 6:(0.) (8)

d=1 s=t—d+1

8

Definition of (3(z)

This is the probability of the occurrence of the observations from ¢+ 1 to T given that S; ended
at t i.e., define

Be(2) = P(O¢41,...,07,Q1 # Qr41|Q: = 1, Q41 # 1)

15



which holds fort =1,...,T — 1 but not for t = T since Ot is not available but its range can
be extended as shown for ¢ > T so that fi1.4(F) is defined for all d

Result 4
0 t>T
1 =T
Be(3) = N oo t4+d (9)
> aiiBera(i)pa(i) I 85(0s)  1<t<T
j=1ld=1 s=t+41

Definition of /(%)

This is the probability, given that S; began at t 4+ 1, of the occurrence of the observations from
t+1toT ie., define

Bi (1) = P(O¢41,...,07,Qr # Qr41|Q: # 1, Q41 = 1)

which holds for 0 < ¢ < T and as for §;(%) its range can be extended as shown for ¢t > T so that
Bi,q(5) is defined for all d

Result 5
0 t>T
‘ 1 t=T
B (3) = t+d (10)
ZZﬁHd 7)aijpa(i H bi( 0<t<T
j=1d=1 s=t+1

The following relationships hold between §:(i) and Gf (%)

Result 6
N
A = Yessil) (1)
_ t+d
Bi(i) = Zﬂt+d Dpa(i) T bi (12)
d=1 s=t+}1

Definition of ~,(7)

This is the probability that, given all the observations, the system was in S; at time ¢t i.e., define

Y¢(i) = P(Q¢ = 1|O1,...,01,Q1 # Qr41)

which is required for 1 <t < T.

Result 7 - .
Ye(4) = (; o (4)67(1) - Zar (4)B+(1) ) ZaT (13)

where the second term in the denominator is interpreted as zero when ¢t = 1. Alternatively

16



Result 8

S(i)ﬂa‘(i)/EL o (3) t=1

Ye(1) = (14)
Ye-1(8) + (af_1 (1)B_1(3) — a—1(2)Be—1( /Z ar (i 2<t<T

Definition of (3, j)

This is the probability that, given all the observations, the system was in S; until time ¢ and
and in S; starting at time ¢ 4 1 i.e., define

’Yt("ﬂj) = P(Qt = 7:3Qt+1 = jloh . '10T1QT # QT+1)

which holds for ¢ =1,...,7 — 1 but not for ¢t = T since O is not available.

Result 9 .
or(d)aij B;(7) /D _ar(i)  i#j

Yeli, 5) = y 7 (15)

Yels) — ; Ye(3, 7) i=j
i

although a value for when 7 = j is not generally required.

Definition of Ag4(z)

This is based on the probability that, given all the observations, the system was in S; at time ¢
and was in a visit of length d i.e., define

8¢(1,d) = P(Q¢ = 1,state in visit of duration d|O4,...,07,Qr+1 # Q)

which holds for ¢t = 1,...,T, but, rather than &(4,d), it is its sum over ¢ i.e., Ag(i) that is
required.

Result 10
t+d N
dZﬁHd Jpa(i) JT :(0.)ei(i) /3 ar(d) (16)
s=t+1 i1

Censoring and truncation

In a censored dataset the values taken at an observation are ignored but not the fact that
an observation took place at a certain time. In a truncated dataset not only are the values
taken at an observation ignored, the occurrence of the observation is also ignored. It does not
seem possible to deal with truncation within the models being considered since the times ¢
are essential for recovering the hidden Markov structure. If the number of hidden time points
between observations is not known, then little can be recovered except when successive states
are independent and the time ordering of the data is immaterial. Consider the censoring case
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where Oy is recorded only if a’O; > ¢ for some known vector a and scalar ¢. Thus rather than
O4,...,07 the observations are

o+ = O; (a’Ot > C)
£ =) NA (a'O; < ¢)

where NA denotes “not available”. A replacement for (1) is required given O7, ..., O; and the
fact that a state ends at T and

Eo{log L,|OF,...,0F,Qr41 # Qr} =

N T
3N Eo{loghi(04©,)Q: = 1,07, ...,0%,Qri1 # Qr}
i=1t=1 XPO(Qt—ﬂOu-'-,O?,QTH#QT)

+E0{1Og P(I; D) R)lofw ey Of-lt: QT+1 # QT}
and from Sansom & Thomson (1998)

EO{IOg bz(ot'®1),Qt = i) Oii-a ey O;".y QT+1 7£ QT}
_ { % log %] - der {£7(0¢ - i)(O: — i)'} (2'0; > c)
—3 log %] — 3t {57 (Tic + (ic — ) (ptic — M)')} (a'0¢ < ¢)
where

pic = Eo{0:{Q¢=1,a'0; < c}
Eic = Va,ro(Ot]Qt = i,a’Ot S C)

The evaluation of these for the univariate and bivariate cases is through standard results available
from Johnson & Kotz (1972), although for the bivariate case when the censoring line is neither
horizontal nor vertical the data must be rotated before the standard results can be used. The
standard results and their development for the rotated case are given by Results 11 and 12 in
Appendix 1. The required replacement for (1) is

Eﬂ{log Lcloil-; rey O;, QT—I—I 7é QT}

N
= 323 6) (5 tom 54 - b {57 (0, )04 — '}

i=1

+
=

32 ) (g o8 1 = gt {7 i+ (e — )i )}

N N (T-1
vi (3) log m; + Z;Z(Z'yt ,j)loga”

1

i

Mz

+
1

o
f[

+

Mz

T
> ( S 6 G, d>) log pali)

i=1ld t=1

and it is this that needs to be maximised with respect to the parameters. In this expression 37
denotes the summation over those ¢t where a’O; > ¢ and Y, that over those where a’O; < c.
Also

’Yt+(1’) = PO(Qt:iIOi'-,--.,O;,QT-H[#QT)
Y (i,7) = Po(Q:=14,Qe1=73]07,...,0F,Qry1 # Qr)
;" (4, d) Py(Q; = i,state in visit of duration d|OF,...,0F, Q141 # QT)

il
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which are evaluated in exactly the same way as v:(2), v:(%, 7) and 6:(%, d) but with the O; replaced
by O; . Indeed, this is not limited to just the O} and these probabilities could be evaluated for
the O, replaced by Oy = g(0O¢) where g is some arbitrary transformation. The key property is
that the O} or, equivalently, the g(O;) should be conditionally independent given knowledge of
the states, Q;. Given Q; = 1, then Oy has the mixed distribution

P(x < Of <x+dx|Q:=1) = b(x)dx (a'x > ¢)
PO} =NAIQi=i) = B} (o)

where B} (x) is the cumulative distribution function of a’O; given Q; = i i.e., P(a’'0; < x|Q; =
i). Thus the ;' (3),7; (4, 7) and §; (4,d) and the analogous forms of the a;(4), B:(4), o} (i) and
B: (i) are given by Results 1-10 with the b;(O,) replaced by B; (c) whenever a’O, < c.

Reduced models

Hidden Markov model

In an HMM the dwell times are not given an explicit distribution as they are in the semt-
Markov case rather they are implicitly geometric with parameters equal to the elements on the
diagonal of A, the transition matrix. Now, is the fitting of an HSMM with geometric dwell
times equivalent to the fitting of an HMM to the same data?

Let the pq(i) be geometric with parameter @; (0 < @;; < 1) i.e.,
pa(i) =5 (1 @) (d=1,2,..)

and define

dij = (1 —@z)a; (1#£5,1<4,5<N)
Then the matrix A with typical element a;; (1 <4,7 < N) is the transition probability matrix
of a finite Markov chain since

N N
Gij >0, Y @i =du+ (1 —aa) Z_; aij =1
i=1 e

Moreover, if the stationary distribution for A is # then a typical element of 7 is

T

; =c

(i=1,...,N)

1—-ai

since substitution in Zﬁ__l ;dj; gives

N N ~
L Qi

Zﬂ'jaji = ¢ E Ti04; + 75

Ji=1 =

1—a;
i
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which is true since ¥ A = 7. Now, summing both sides of the expression for #; over i gives

N s -1
€= (Z 1—ah—>

1=1

since "NV, #; = 1. Now consider the probability of a typical path given by the event
Cp, = {8 startsat¢=1and ends at t = dy,
S;, starts at t =d; + 1 and ends at t = d; + dy,
S;, startsatt =d;+-+-+d,_1+1landendsatt=d; +---+d,}
The probability of this event in terms of the HSMM with geometric dwell times is

P(Cp) = P(Ii=1,Dy=dy,Iy=143,Dy=dy,...,I, =1,,D, =d,)

iy Pdy (1) @iy iy Pa, (32) - - - Qi iy Pa, (1)

I

sdi—1y  odyj—1  zdp—1 ~
= 7r"'l 1.111.1 a""1120'1121.2 MRt 0 S (1 - a"’:rir)
since @;y5, (1 — @iy4y) = @iy4,- However, set ¢ = dy + -+~ +dg (k= 1,...,7) then in terms of a
HMM with transition probability matrix A the probability of event Cj, is
P(Cp) = PQo#141,Q1=Q2="=Q4 =11,Q411 =" =Q, = i
y o '7Qt,-_1+1 == Qtr = ir;Qtr-}—l 7é 7’7‘)
-1~ d2—1 ~dp—1 ~
= Z 7rJa’.111 1111 atﬂzazfzz s Qg (1 - ‘irir)
19611
di-lz  sd—1  de—1 -
= C7r11 a’zllzl Qiyig a’zlzzz M 1.,-1. (1 a’ir‘ir)
= cP(Cy)

where it has been assumed that the HMM is stationary. Exact equivalence can be acheived
if the HMM is allowed to have an initial distribution 7 rather than #. In either case the
two probabilities agree up to a constant of proportionality due to the end points which are
asymptotically neglible. These probabilities express that part of each model’s likelihood resulting
from the Markovian structure, thus by setting the dwell distributions to be geometric the HSMM
fitting will fit a HMM with transition probability matrix A.

Note also that the conventional HMM, in which a state does not necessarily start at ¢ = 1 nor
end at t = T, can be fitted. In this case

P(Cp) = P@r1==Qun=1,Qnu1 = =Qn =10
o Qtp_yt1 = = Qy, =4p)
~ ~dy—1-x ~dy—1 ~dp—1
= T ahlh a’“ﬁazfzz 1::1:1‘

T (g ()

and the end dependent factor would need to be built into the various recursions.
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Independent states

Independent states occur when there is no Markovian structure and the time ordering of the data
is immaterial. Within the context of HSMMs, this can be achieved through further reduction
from an HMM by restricting the transition matrix such that its elements are

dij = P(Qe =i|Qe—1 = j) = P(Qe = i) = 7,

i.e., at any time the probability that the system is in a certain state does not even depend on
the state of the prior observation. In terms of Sansom & Thomson (1998) it should be noted
that 7; is equivalent to their ; i.e., the proportional representation of state 1.

In the section on maximisation formulae (see p. 12) parameterisation of the dwell time distri-
butions (i.e., the pg(z) of (1)) was illustrated with some example parametric forms. In order
to fit a model with independent states it is necessary to also allow for parameterisation of the
transition matrix (i.e., the a;; of (1)). Thus, (1) would need to be optimised with the a;; as the
a;; defined above and with geometric p4(i)s which have 7; as their parameter.

Scaling

The probabilities a.(2), af(2), Be(2), and B;(7) all become small as ¢ increases, to the extent that
they become too small to be represented within a computer. However, the problem can be
circumvented by scaling them all, together with the probability of the observation (i.e., b;(O,)),
using one set of scaling parameters — k;. Scaling is required only for 1 < ¢ < T, thus for other
values of ¢ k; can be taken to be unity i.e., ks =1, t < 0,t > T. Let (i), the scaled version of
a4 (i), be such that Z =1 G:(1) = 1 and suppose

Olt(’L H k Ott

T=-00
then

Hk—l Zat

T=—00

N N
kozl/zao(i)zl/z’ﬂ'i:l

which is consistent with both the definition of ag(2) and ko. Also let

which, in particular, gives

Multiply (5) through by [T:__ k- to obtain

N oo t-d t
H k at ZZ H O d a,npd( ) H kﬂbi(os)
T=—00 j=ld=1T=—00 s=t—d+1

or

N oo
(i) =3 Y tu_a(d)ajipad) [ 5:(0.)

j=1ld=1 s=t—d+1
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Now let -
II *-6:(9)
T=t+1
and multiply (10) through by []32,,, k- to obtain

[os) t4-d
H k'-rﬂt ZZ H k‘rﬁt—{-d( aupd H k, b
T=t+1 J=1d=1 r=t+d+1 s=t+1
or
N o t+d
=22 Bvali)aispai) T bl
j=1ld=1 s=t+41

Using similar definitions for &} (3) and B7(z) as for &;(¢) and Bq(i) the following expressions follow
N
&; (1) = Z u(7)aji

Bt(l) = Zau ﬂt

Formulae using scaled probabilities

Computational formula for &(7)

From (8)
t

t
(i) = Z & _g(i)pa(t) I 6:(0,)
d=1 s=t—d+1
since &;_4(i) = 0 for d > t. Each term of the summation includes a further term in the product

over s, thus in a situation where b;(0,) can be zero (i.e., the observation is impossible for the
state concerned) the term that first includes a b;(O,) = 0, and all subsequent terms, will be
zero. Thus

d t
&)= dl‘-d(i)Pd(l) H
d=1 -

where
. 0 d=d
bi(Os—gy1) = { S0 1<d<d

However, if b;(0,) can never be zero then let
t
&(i) = Y &(i,d)
d=1

where .

&(6,d) = &_g(pa(d) [ 6:(0,)
s=t—d+1

ber(iyd—1) = &8 y(@pacs(i) J| 6:(0.)

s=t—d+
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thus

6ivd) = s d - ) 2 0y a7)

i.e., a simple recursive formula. But this is valid only for d > 2 and ¢ > 1 since pg(¢) and &q(3, d)
are undefined, thus &;(%, 1) is required for all ¢. From the definition

&4, 1) = &1 (1)p1(5)b:(Oy)

Computational formula for 3,(:)

From (12) r rrd
Br() =Y Bera(i)pa(i) ] 5:(0.)
d=1 s=t+1

since ﬁt+d(i) =0ford>T —t. As for (1)

R d’ . t+d .
Bt (3) = Y Beva(dpa(i) J] 0:(O,)
d=1 s=t+1

where
~ 0 d=d
b"(o”d)_{ >0 1<d<d

However, if I;i(O,) can never be zero then let

T-t
Br(i) =Y &(i, d)
d=1

where rrd
&4, d) = Bera(i)pa(i) [] 8:(0.)

s=t+41

or
R t+d—1 .
e41(i,d — 1) = Brya(i)pa—1(i) [] 8:(0s)
s=t+1
thus )
6 d) = (i, d = ) LA0h011) (18)

i.e., a simple recursive formula. But this is valid only for d > 2 and ¢ < T — 1 since po(¢) and
&7(1, d) are undefined, thus &(z, 1) is required for all ¢. From the definition

€:(i, 1) = Bey1(4)p1(1)bi( Og1)

Formula for k;

Suppose k; known for s < ¢t and let

&(i) = Y & a(pali)b(0)) [ B(0)
d=1 a=t—d+1
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ie.,

and since IV, G&;(i) = 1 thus

Formula for v(7)

From (13)
t—1 oo oo
() = ( II keai( Z II kec-(3)B:(i ) Z H kgar (i)
7=0f8=—00 7=18=—00 t=1f6=—o00
t—-1 T oo t—-1 T
= (X T w11 wosin - & T moerts) 11 sesnts ) ST kverts
T7=060=—00 f=7+1 7=10=-00 f=7+1 i=1f=—oc0
t—1 . t—1 R N
= ( @i(i)ﬂi(i)—zér(i)ﬂr(i)) > ar(i)
=0 T=1 i=1
t—1 . t—1 N
= Y aOB) - 3 a(0)0)
=0 =1

as N | &r(4) = 1. Similarly for the recursive formula for (3) (i.e., (14))

N o e
)= { Ye-1(8) + &1 (9)F7-1(3) — &-1(8)Be-1(2) t=2,...,T

Formula for Ag4(7)

From (16)
t+d N oo
8al) = &% T1 kebesapat) 1] 6:(006i) /3 TT krar(d
t=07=—00 s=t+1 i=171=-00
t+d
= dz H krBera(i)pa(i) J[ kabi( H ko (i Z ]‘[ kr o (i)
t=0 r=t+d+1 s=t+1 T=—00 =1 7T=-00
t+d N
= dZIBHd Dpa(i) [] 5:(0.)at() /" ar(d)
s=t+1 =1
t+d
= d25t+d(z pa(i) T] 5:i(0,)a;(:)
s=t+1

From the examples given illustrating the maximisation of (3), although Ay4(%) is required in the
non- parametrlc case and for d < D — 1 in the example given for the mixed range distribution,
generally 3°3_; Ag(i) and ¥7_, 24 4(4) are also required. Thus

T 1 T T t+d
> Z8d) = 35 Bera(i)pa(d) T biC
d=1 d=1t=0 s=t+1
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T t+d
= Z@()Zﬂwd Jpa(i) ] i
t=0 d=1 s=t+1
T -~
= > &(1)8;()
t=0
Similarly
T T T t4-d R
Yo au(@) = YN dBra(i)pali) T bi(O
d=1 t=0d=1 s=t+1
T
SIDICHOIAD
t=0
where
t+d
Zdﬂt-{-d Dpa(i) J[ b:(
s=t+1

since Bt+d(i) = 0 for d > T —t. Successive terms of this summation generally decrease such
that it can be halted before d = T — ¢ at a point when additional terms become too small to
significantly alter the overall value of the summation. However, where ;(O,) can be zero, then

as for & () and Gy ()
t+d

Z dﬂH_d('L pd(’l, H b

s=t+1

where d' such that
X 0 d=d
bi(0t+d) - { >0 1 < d< d'

Formula for a;;
From (2) and (15)
N T
a"l.] Z C\tt a'u ,Bt Z Z at a'z:[ ﬁt
j=1t=1
thus

2

kT i)ai; B (7)

ai; =

T
‘rat a’l.] IGt (.7 Z

j=lt=171

M=
::18
|||E8

il
M 1
ﬂ
1l
|
8
M=

T t oo
> _H krag(i)ai; [[ kB! 3)

li=1T T=t+1

kroy(i)ai; [ *-B: (5 /

T=t+1

ok
I
A
~‘
I
!
8

J

- N T ~
«(Daii 67 (3) /D2 Y 6a(d)as; B; (5)

I
M=
Q>

t=1 j=1t=1
Formula for P(Oy,...,07)
Since v
P(Oy,...,07) = ar(i)
i=1



thus

N
log P(O1,...,07) = log)_ ar(i)
=1

N T
= 1og(2aT(z‘) II kt>

t=—o0

T
= —log H kt

t=—o0

T
= - Z log k;
t=1

Formulae for re-estimation of observation distribution
parameters

Formulae for re-estimation of observation distribution parameters are found through the maximi-
sation of the first term of (1) and the re-estimation formulae were given by Sansom & Thomson
(1998) with +;(%) replacing their a;(x). This assumes that each state’s observations are normally
distributed but more general situations can be covered by allowing a mixture of normals for
each state, i.e.,

M
bi(Ot) = 2_: fi(m)Pm(Otlei(m))

where o, is the tth observation which if generated by the ith state results from a process whose
output can be modelled as a mixture distribution of M components each of which has a fractional
representation of f;(m) with S=™_. fi(m) = 1 and a density of P,. The parameters of these
densities are represented by 6;(m) which for present purposes have been taken to be normal and
so 0;(m) = {ui(m), Ei(m)}. Furthermore, both bivariate and univariate data may be concerned
and the following notation is used:

(m) = .uol’i(m)
pi(m) = ( ))

/"'Ozi(m

Ti(m) = < Ugli(m) Uoloﬂ'(m))

Ooroi(m)  03,;(m)
Where
fi(m) P (04]6;(m))
=t fi(m) P (04|6:(m))

it can be shown, with the tilde indicating the new estimate, that

4 _ Z:trzl 'y,-t(m)

E%:l Ef:l Yit(m)

. _ i yie(m)os + Cic(m)pic(m)
ZtT:I Yit(m)

Yit(m) = 7:(2)
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i ’)’it(m) (Ot - ﬁi(m))(ot - ﬂi(m)),
4 FCic(m)(Tic(m) + (pic(m) — fi(m)) (pic(m) — fi(m))’)
B Ethl Yit(m)

where SF, tic(m) and Xi.(m) are as defined in the section on censoring and truncation (see p.
17) and

f]l(m)

Fi(m)® (zm (1)
7= L=t Ji(m)®(2m (1))
where T~ is the number of observations where a’O; < ¢ and ®(-) denotes the standard normal
cumulative distribution function and

Cic(m) =

o (1) = c —a'pi.(m)
m (1) a'¥;.(m)a

In the case of no censoring, C;.(m) = 0.

Viterbi algorithm

The major problem associated with fitting HSMMs is the estimation of the model parameters.
Another problem is finding how best to assign a state to each observation once the parameters
have been estimated, and to do this a variety of methods is available. The Viterbi algorithm
(Forney 1973) finds the most likely sequence of states for the observations and does not permit
any forbidden transitions.

The Viterbi algorithm requires the definition of two more probabilities. Firstly, 8;(¢) which is
the maximum, over all possible state sequences p, of the probabilities of occurrence of the first
t observations with the last one being the last of a series from S;, i.e.,

5t(7’) - m;xP(Ol)"wot)Ql :qu"')Qt:ier-i—l 71—'2)

Secondly, é; () is the maximum, over p, of the probabilities of occurrence of the first ¢ observa-
tions with a change to S; starting at ¢t 4+ 1, i.e.,

6 (1) = "F'P(01,...,04,Q1=q1,..., Q¢ # %, Qey1 = 1)

It can be shown that

t

&(i1) = ™o _q(pa(i) [ 0i(0.)
s=t—d+1
6:(3) = MFe(i)ai;

and note that 63(¢) = m;. Both 6:(i) and 6;(j) become very small for sufficiently large 7' and
log é;(7) and logé;(j) can be calculated instead. However, some of the factors involved can
be zero, in which case the particular candidate can be ignored with regard to the maximum
selection process before an error, due to taking the logarithm of zero, is generated.

It is also necessary to keep records of which d it was that maximised 6;(¢) and which 7 maximised
87(7) so that when the d7(i)s have been determined it is possible to back-track through those
records to recover the best sequence of states, ¢;. Suppose these records are kept in p;(¢) and
p;(7) then

qT — argl’?ax(sT(i)
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and
¢ =prler) t=T-pr(er)+1,...,T

then the prior ones are found in a similar way with T replaced by T — pr(gr) and so on until
finally ¢, is determined.

The extent to which the Viterbi algorithm correctly attributes a state to an observation can be
assessed through simulation. After estimating the model’s parameters, simulated data can be
generated and the Viterbi algorithm used on that data. Then the algorithms attributions can
be compared to the simulated data where, of course, the state associated with each observation
is known. Such an assessment is important since, for example, in one case it was found that,
although the algorithm achieved a 95% correct attribution rate, one of the rarer states — 5%
of the observations — was poorly recognised by the algorithm and only 1% of the data was
attributed to that state.
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Appendix 1

Result 1 — Derivation of o4(%)

This is the probability of the occurrence of the first ¢ observations with the last one being the
last of a sequence from S; i.e., define

at(i): P(Ol;--',ot;Qt:inﬁ-l 7é 7’)

thus

t
o(i) = ZP(Ol, ..+, 04, S; begins at ¢t — d + 1 and ends at ¢)
d=1

= P(Ol, ..., 04, S; begins at 1 and ends at %)

N
P(O1,...,04 5 ends at t — d, S; begins at ¢ — d + 1 and ends at ?)
d_1 =
J#
¢ N t-1 ¢
= mpe(d) [T 0:(0s) + DD a—a(i)ajipa(i) ] 8:i(0,)
s=1 7j=1d=1 s=t—d+1

This holds for t = 1,...,T provided the second term on the right is interpreted as zero when
t = 1. Now defining, firstly
and secondly

ap(i)=m (1=1,...,N)

where 7 is the stationary distribution of the Markov chain given by wA = w. Also it can be

noted that
N

E ag(j)aj; = E M0 = T;

i=1

Thus fort > 1
t

N o
at(z = Zzat d(] a]zpd ) H bi(oa)

j=1ld=1 s=t—d+1

where the summation over d is now to oo since oy_q(2) =0 for all d >t and fort =1

N
ai(i) = Z ao(7)ajip1(i)bi(O1)

TiP1 (i)bi(ol)

Il

from the second definition.

Results 2 and 3 — Derivation of oj (%)

This is the probability of the occurrence of the first £ observations with a change to S; starting
at t + 1 i.e.,

at*(z) - P(Ola"'10t7Qt5£i:Qt+l :'L)
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N
= X P(01,..,00,Q: = j,Qu1 =1)
o
N
= Z P(Qiy1 =1Q¢ =7,Qt41 # 7,01,...,0:)P(0O1,...,04, Q¢ = 7, Qts1 # )
J:
J#i

N
= Z ai(d)as
i=1

Substituting this into (5) gives

t

at(i)=ia2‘_d(i)pd(i) II &0,
d=1 8

=t—d+1
Also note that for £ = 0 a value can be defined since from the definition for ao(z) it follows that

N
(i) = 3. ao(s)ass = aofi) = m

Result 4 — Derivation of f:()

This is the probability of the occurrence of the observations from ¢4 1 to T given that S; ended
at ¢ i.e., define

Be(i) = P(Otq1,...,07,Q1 # Qr41|Q: = %, Q141 # 1)

which, unlike the o;(%), depends on T and is undefined for ¢ = T since otherwise Or,; would
be required. For0 <t < T

N T-t
Be(i) = Z Z P(O¢41,...,07,5; begins at t + 1 and
G 9=t ends at ¢ + d,Qr # Qr+1/Q¢ = 1, Qi1 # 1)

which by Bayes’ theorem and using the substitution
P(S; begins at t + 1 and ends at t + d|Q; = 1, Q¢y1 # %) = aij pa(J)
can be written as

T-t
Bi(i) = Z > P(O¢t1,...,01,Qr # Qi
12 d=1 Q: =1,5; begins at t + 1 and ends at ¢t + d)a;; pa(7)

T-t
= Z; Z aij P(O¢41,---,Ot4a) X
]j;i d=1 P(Otyat1,--+, O1, Qr # Q141(|Qt1d = J, Qevrarr # J)paly)

N
= ) aj (E‘g:_f_l i, 5;(0,)P(Ottat1, - - -, O, Qr # Q141 |
i=1 Qerd =y Qerarr # 1)Pa(7) + [li=ens bj(oa)PT—t(j))

where the last term of the summation over d has been separated from the others ast+d—1=T+1
when d = T — t and no observation is available for O, ;. However, by defining f7 (i) = 1 the
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last term can be included with the others and by further defining £;(i) = 0 for all ¢ > T then
for0<t<T

N o t+d
zzzauﬂt—kd ])pd .7) H b )
j=1ld=1 s=t+1

where the summation over d is now to oo since fy44(z) =0 forall d > T — ¢.

Results 5 and 6 — Derivation of §;(7)

This is the probability, given that S; began at ¢ + 1, of the occurrence of the observations from
t+1to7 ie.,

B: (1) = P(O¢11,.. -, O1, Q1 # Qr11|Qt # %, Q41 = 7)

which is defined over the range 0 < t < T. Now proceeding as for Result 4 by using Bayes
theorem and noting that

P(S; ends at t + d|S; begins at ¢t + 1) = pa(1)

gives
T-¢t
B (1) = P(O¢41,-..,07,S; begins at ¢t + 1 and

d=1 ends at t +d,Qr # Qry1|Q¢ # 4, Q1 = 1)
T-t

= P(O¢t1,...,07,Q7 # QT41|S; begins at t + 1 and ends at ¢ + d)
d=1 X P(S; ends at t + d|S; begins at t + 1)
T—t-1

= Y T4, 5(0.)P(Osyds1, - .-, O1, Qr # Qa1 ’

d=1 Qt+d = %, Qt+dt1 7 1)Pd(8) + [Ti=ss1 0:(Os)pr—o(4)

and from the definitions for ;(i) where £ > T the summation over d can be taken to oo so

t+d
Zﬂm Dpa(i) T o
d=1 s=t+1

Substituting the right hand side of (10) in (9) gives
N
Be(i) =) aij B (5)
i=1

which with (10) gives
t+d

N o
:ZZ tad(J)aij pa(s) H bi(

Jj=1 s=t+1

Results 7 and 8 — Derivation of v,(7)

This is the probability that, given all the observations, the system was in S; at time ¢ i.e.,

’Yt('l') = P(Qt:ilol)"-yoT)QT#QT“H) (t:]-:”-aT)
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T

= Z P(Q; = ¢ and has duration d|Oy,...,0r,Qr # QT41)
d=1
T min(t—1,T-d)

= Z Z P(S; starts at 7 + 1 and ends at 7 4+ d|O4,...,O0r1,Qr # QT+1)
d=1r=max(t—d,0)
T min(t—1,T~d)

= Z Z P(O4,...,0r,S; starts at 7+ 1 and ends at 7+ d, Q@ # Qr41)

d=1 r=max(t—d,0)
/P(011 RS OT7QT # QT-I—l)

However, when 0 < 7 < T — d the summand above can be re-written as the product of the
following three probabilities

1) P(Orid+1, -+, 01, Q1 # Q741|01, ..., Oryq, S; starts at 7 + 1 and ends at 7 + d)
2)  P(Osy1,...,0744,Sistarts at 7 + 1 and ends at 7+ d|Oq,...,0,,Q; # 1,Qr41 = 1)
3) P(Ol:"'aOT7QT§éi)QT+1:i)

which evaluates to
T+d

Breali)pali) [] b:(0.)a(s) (19)

s=7+1
When 7 = 0 the summand becomes
P(Oy,...,0r,S; starts at 1 and ends at d, Q7 # Q1+1)
= P(Ogt1,...,01,Qr # Qr41|01, ..., 04, S; starts at 1 and ends at d)
X P(Oq,...,04|S; starts at 1 and ends at d)pg(7)m;

d
= PBa(i)pa(s) 1:[ bi(0,)ag(3)

which is the same as (19) when 7 is set to zero. Similarly when 7 = T —d the summand becomes

P(O4,...,07,S; starts at T — d + 1 and ends at T')
= P(Or_g41,...,0r,S; starts at T —d + 1 and ends at T

O1,...,07_4,S; starts at T —d+ 1) X P(Oy,...,07_g4,S; starts at T — d + 1)
T

= Br(i)pa(i) J[ i(0s)ar_a(s)

s=T—d+1
where Br(¢) can be introduced as its value is 1. Thus (19) holds for
max(t — d,0) <7 < min(t - 1,7 — d)

and since o (:) = 0 for 7 < 0 and B,44(i) = 0 for 7 > T — d the limits for the summation over
T can be resolved as shown and

T t-1 T+d
’Yt(z) = Z Z ,B-r+d(7')pd(7') H bz(O,)a:(z)/P(Ol, t . '10T: QT # QT+1)
d=171=t—-d s=17+1
Also from the definition for a4(7) it can be noted that
N
P(Oy,...,07,Qr # Qr41) = Y_ ar(i)
i=1
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The expressions for a4(t), B;(i) etc are recursive and a recursive expression for (%) can be found
by considering

T rid N
Year(B) = Y Y Brya(i)pali) [ 6:(0.)es(i) /Y ar(d)
d=1r=t+1-d s=7+1 i=1
T r4d t4d
= > Z Brra(i)pa(s) ] i )+ Bera(i)pa(i) [ b:(O
d=1 \r=t—d s=1+41 a=t41

t

—Be()pa(i) I 6i(Os)ai_q(i ) Zar

s=t—d+1
= 7e(8) + (a5 (1)B; (3) — e (9)Be(1)) ;aT(i) (20)

By substituting ¢ = 1 in the full expression for (1), noting that the only non-zero term in the
summation over 7T is for 7 = 0 and using (12) gives

N
m(t) = aa(i)ﬂé(i)/z ar(i)
i=1
Successive substitutions in (20) yields fort =1,...,T

t—1

Ye(3) = (Za (£)81(5) = Y e (1)6-(3) ) ZaT(z

=1

where the second term in the denominator is interpreted as zero when ¢ = 1.

Result 9 — Derivation of 7:(z, 5)

This is the probability that, given all the observations, the system was in S; until time ¢ and
there was a change with §; starting at timet  1lie,fort=1,...,T—1landi#j

’Yt(i,j) = P(Qt =1, Qe41 :j|011-~;0T;QT 75 QT+1)
P(Oy,...,07,Qt = 1,Qt41 = 5,Qr # Q1+1)/P(O1,...,07,Q1 # QT 11)
= P(O¢t1,---,01,Qr # Q141]01, ..., 04, Q¢ = 1, Q141 = j)

X P(Qi+1=7]01,...,0,Q: =1, Qt+1 #1)

X P(Oy,...,04,Q: =1,Q¢41 # ZCYT

Thusfort=1,...,T—1andi#j

7t(7‘:.7) = O‘t a"LJ ,Bt (.7 /Z aT

Although it is not generally required a value for when ¢ = j is given by

N
'Yt(i’i) = 'Yt(i) - J; '}'t(iyj)

i
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Result 10 — Derivation of Ag4(3)

This is based on the probability that, given all the observations, the system was in S; at time ¢

and was in a visit of length die.,fort=1,...,T
6:(1,d) = P(Q: = t,statein visit of duration d|Oy,...,O0r,Qr+1 # Q1)
min(t—1,T—d)

= Z P(S; starts at 7 + 1 and ends at 7 4+ d|O1,...,Or, Q141 # Q1)
7=max(t—d,0)
min(t—1,T—d)

= Z P(Oy,...,0r,S; starts at 7 + 1 and ends at 7 + d, Q741 # Qr)
T=max(t—d,0)

/P(Ol, -, 01, Qri1 # Q1)

T+d

= Z Br+d(i)pali H bi(0,)az (i ZO‘T

r=t—d s=7+1

where the last step follows from the development leading to (19), but, rather than &:(z, d), it is
Ag(7) that is required. Thus summing throughout over t and reversing the summation on the
right hand side yields

_ min(T,7+d) T+d N
Ag(t) = Z Y Brra(i)pa(d) T 0i( /ZaT(i)

7=1-d t=max(1,7+1) s=7+41

T -1 min(T,7+d) T4+d N
= > Y. Brra(@pa(i) TT i /ZQT(Z')

=0 t=7+1 a=-r+1

since a*(i) = 0 for 7 < 0 and consequently since 7 > 0 thus 7 +1 > 1. The inner summation’s
upper limit can always be taken to be 7+ d as B,44(4) = 0 when 7+ d > T and so it just yields

d. Thus
t+d

dZﬂM )pa(i) [ 6i(0,)es(5) ZaT

s=t+1

Result 11

From Chapter 13 (p. 81) of Johnson & Kotz (1972) where X is a N(u, 02) random variable and
with A < X < B then, where ¢(-) is the standard normal probability density function and ®(-)
denotes the standard normal cumulative distribution function,

¢ (47#) - ¢ (57*)

E{X|A3X§B}=u+¢(37_ﬁ)_@(%__u)

and

Var(X|A< X < B)= |1+ (A;u)z (A{“% TR (¢ (%) - Z(B;”) ) o
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When concerned with values below a value ¢, then A = —co and B = ¢ thus

Welo) = w0t

) o, c—pu\ o) (o))
e = o1 () £2)- (45))

Q

Result 12

From Chapter 36 (p. 113) of Johnson & Kotz (1972) where Z = (Z1, Z;)' a MVN,(0, ) random
variable with 017 = 092 = 1 and 613 = 021 = p and if Z; > h, Zs > k then

E{Zi} = (¢(h)(1 - B(A))+ po(k)(1— &(B))) /L(h, k; p)
E{Z7} = (hg(h)(1 - B(A4)) + pkg(k)(1 - &(B))
+o(1 = p*)18(h, ki p)) [ L(h, k; p) +1
E{Z} = (pp(h)(1—®(4))+ ¢(k)(1 - B(B))) /L(h,k; p)
E{Z3} = (p’he(h)(1- ®(4))+ kg(k)(1- &(B))
p?)2(h, k;p)) /L(R, k; p) + 1

Il

+p(1 -
E{Z1Z:} = (ph(h)(1—®(4))+ pk ( )(1 - 2(B))
+p(1 = p)p(h, k3 p)) [ L(h, ks p) + p (21)
where
A = (k—-ph®)/\/1-p? = ®(A)"=° 0
B = (h—pk?)/y/1-p? = ®B)*==° 1
1 1 k=—o0
h, k; = — (————————hz—2 hk—t—kz) — 0
#( p) P exp 2(1 - pz)( p )
1
L(h, k; R
(h, k; p) Py
%0 1 k=00
X /}; fk exp (—m(zf — 2pz129 + z%)) dzidzg — 0 (22)
in which & = —oo represents no truncation of Z,. Note that the bivariate form of & can be

written as ®(h, k; p) and ®(h, oo; p) = ®(h) also note that
®(h, k; p) = 1 — L(h, —00; p) — L(—00, k; p) + L(h, k; p)
and so by letting & = oo when the last two terms are both zero
L(h,—o0ip) = 1 — ®(h)

Substituting this and the results of (22) into (21) yields for truncation of Z; only

E{zi} = ¢(h)/(1 - 2(h)) (23)
_ ¢(h) ¢(h) \?
Var(Z,) = 1+h1—§>(h)— (1—<I>(h)> (24)
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E{Z,} = pE{Z} (25)

Var(Zs) = p*Var(Z;) —p?+1 (26)
E{Z,Z,} = phE{Z:}+p
Cov(Z1,Z,) = pVar(Zy) (27)

and so

E{Z|Z, > h} _¢(h) ( L )

1 P
Var(Z|Zy > h) = Var(Z 2
(2|2, > ) (1)(PF’2+viszl)>
When concerned with Z; < h and if, rather than standardised normal variates, X; is marginally
distributed as N(,ul,al) and X, as N(ug,0%) then the following substitutions can be made:
Zy — — X_1~1_y_ Zy — —;’i— and A — — c—;lﬂ It should also be noted that ¢(—c) = ¢(c) and
®(—c)=1- ®(c). Thus from (23)

d)(c I‘-l)

E{X1}=p1 - 01@(0_—_&)

and from (25)

E{X2} = p2 — 02p

e ¢(c_;[1ﬂ_) ¢(c;fl) 2
Va.r(Xl) _cr1 (1—- ( p )q)(c——m N ((I)(C—ul)) )

Var(X;) = ( —p +—Var(X1))

and from (24)

and from (26)

and finally from (27)
Cov(X1, X,) = pZ—jVar(Xl)

and so
$(5t)
= g
E{X|X;<h} = ¢(__L)
2 = orp ey
0'2 po102
Var(X|X hYy = A 1 28
ar(X|X < ) (pam o3(o% + £(1 - p?)) (2)
where

It can be noted from Abramowitz & Stegun (1972, p.932) that for 2 < 0

g%:—z/(l—%-l—lz:’ +)
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which is most accurate for z large and negative but by including terms up to z!* values of A are
in error by at most 0.1% for z < —5.

If truncation above an arbitrary line is required so that only the X that satisfy a’X < ¢ are
available then this can be treated by a rotational transformation of the axes. If the (z;, z,) axes
are rotated an angle ( clockwise, then the co-ordinates of a point with respect to the new axes

are given by
] \ cos( sin( z1
zh |\ —sin{ cos( To

or where T is the transformation matrix
X" = TX.

If X represents a MVNy(u, X) variable then X will be a MVNy(Tu, TXT') variable. Further-
more, suppose the arbitrary line is of slope g and passes through the point (p1, p2). In this case,
the axes need to be rotated so that the line becomes vertical with the data to be retained on its
left i.e., rotated an angle of 90 + tan=!(g) = 90 + ¢, say so that ¢ is the angle between the line
and the horizontal axes measured clockwise. Thus

T___(—sme cos € )
—cose —sine
and a’ = (—sine cose) i.e., the top row of T and since (p1, p2) is on the border of the truncation

thus ¢ = pycose — pysine. Let
r
2!
T =
o= ()

, TO'% rp 1'0.1 1'0.2
T = T, T r. 2
p 01 02 0y

where with a leading superscript, r, to denote that those parameters are for the rotated distribu-
tion, these expressions serve to define "uy, "ua, "o1, o2 and "p. After truncation the remaining
data has mean p, and variance X, and from (28) and (29)

(S o
pr = Tp— 2L
3= \ o

o 1

¥, = MATIT + 0(1- p?)(1- ™) ( 8 2 )

where (28) has been rewritten as
T2

_r 1 pToy o9 0 0
Ver(X <) = A( Do 03 )* (o ra%u—rple—%))

Now, noting that T~! = T/, rotate back to obtain the mean y. = T'y, and variance X, =

T'S,.T as
L,
e = # (o) TpToy

ra. 1

sin ecos ¢ sin? e

2 .
B, = 1:42“‘"0%(1—7’2)(1—54)( cos’ € smecose)
These are the mean and variance of the data that satisfy a’X < e.
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