A survey of demersal fish stocks on the Chatham Rise, New Zealand, March 1983

J. M. Fenaughty and
Y. Uozumi

New Zealand Fisheries
Technical Report No. 12 ISSN 0113-2180

1989
MAF Fish

r fox

Don

A survey of demersal fish stocks on the Chatham Rise, New Zealand, March 1983

J. M. Fenaughty
and
Y. Uozumi ${ }^{*}$

* Far Seas Fisheries Research Laboratory 7-1, 5 Chō-me Orido, Shimizu 424, Japan.

New Zealand Fisheries
Technical Report No. 12
1989

Published by MAFFish Wellington 1989

ISBN 0-477-08081-2

MAF Fish

MAFFish is the fisheries business group of the New Zealand Ministry of Agriculture and Fisheries. It was established on 1 April 1987 and combines the functions of the old Fisheries Research Division and Fisheries Management Division and the fisheries functions of the old Economics Division.

The New Zealand Fisheries Technical Report series in part continues the Fisheries Research Division Occasional Publication series. Conference proceedings and bibliographies will now be published in the New Zealand Fisheries Occasional Publication series.

Inquiries to:
The Editor,
Fisheries Research Centre,
P.O. Box 297,

Wellington,
New Zealand.

Edited by S. J. Baird and G. G. Baird
Set in 10 on 11 English Times
Typesetting by Industrial Art and Communication Ltd. Printed by Thames Publications Ltd.

Cover: Shinkai Maru.

Contents

									Page
Abstract	5
Introduction	-•	5
Hydrology	-•	..	6
Materials and methods	6
Survey area	-•	\cdots	6
Vessel and gear	6
Trawl stations	7
Catch weight and b	ogica	par	ters	7
Biomass estimation	9
Results and discussion	..	-.	10
Hydrology	-	10
Catch rates and comp	ositi		-	..	.	\cdots	11
Biomass estimates	-•	-•	16
Biological observation		25
Acknowledgments	32
References	-	-•	..	32
Appendix 1: Trawl net	plans	-•	33
Appendix 2: The calcula	tion	f st	um		-	35
Appendix 3: Fish speci	ta	d	g the	surv		*	35
Appendix 4: Catch summ	nary		..		.	-•	\cdots	..	37
Appendix 5: Mean catch rates ($\mathrm{t} . \mathrm{km}^{-2}$) and standard deviations for									
Appendix 6: Mean catch rates ($\mathrm{t} . \mathrm{km}^{-2}$) and standard deviations for									
10 other major species by stratum ..					-•	39
Appendix 7: Biomass estimates (t) by stratum					40
Appendix 8: Performance data for trawl stations						..	-	..	41

Figure 1: Hydrological features and place names mentioned in the text.

Abstract

Fenaughty, J. M. and Uozumi, Y. 1989: A survey of demersal fish stocks on the Chatham Rise, New Zealand, March 1983. N.Z. Fisheries Technical Report No. 12. 42 p.
The Japanese research vessel Shinkai Maru carried out a random trawl survey of the Chatham Rise off the east coast of the South Island, New Zealand, in March 1983. Catches from the 127 trawls in depths of $87-809 \mathrm{~m}$ were used to calculate biomass indices for the main catch components. Biological and sizefrequency data were collected for the major catch species. Hoki were the most common fish taken during the survey and occurred in most trawls over 200 m . A biomass index of 1772000 t of hoki was calculated for the entire survey area. A correlation was found between the size of hoki and the depth of water; size increased with depth.

Introduction

The Chatham Rise is a broad plateau between 42° 30^{\prime} and $45^{\circ} 00^{\prime} \mathrm{S}$ which extends some 540 n . miles east of Banks Peninsula (Figure 1). The plateau varies between 200 and 600 m along its central axis and interrupts the north-south flow of major water masses. It also influences the position of the Subtropical Convergence Zone which lies along its axis for most of the year. The mixing of water masses along the Chatham Rise and the upwelling which occurs in the Mernoo Gap (which separates the Chatham Rise from the South Island continental shelf) may benefit primary planktonic production along this plateau. The convergence is a zone of pronounced faunal change and affects the distribution of several nektonic groups which are abundant along the Chatham Rise (Robertson et al. 1978, Robertson and Mito 1979). The mesopelagic faunas found here are major items in the diet of hoki (Macruronus novaezelandiae) and many other commercial fish species.

Before 1960 domestic vessels fished here sporadically, mainly around the Mernoo Bank for groper (which included hapuku (Polyprion oxygeneios), bass groper (P. moeone), and bluenose (Hyperoglyphe antarctica)), and near the Chatham Islands for blue cod (Parapercis colias). Substantial fishing effort on the Chatham Rise began when Soviet trawlers fished on the Mernoo Bank in 1964. Effort was steadily increased by the Soviets and the Japanese in the late 1960s. Catch data from Japanese trawlers in this area for 1972-77 are summarised in Table 1
(Soviet data are not available). The main target species until 1977 were: hoki, barracouta (Thyrsites atun), warehou (most were probably silver warehou (Serielella punctata)), jack mackerels (Trachurus spp.), and red cod (Pseudophycis bachus).

A substantial bottom longline fishery for ling (Genypterus blacodes) had been developed by the 1970s, initially by Japanese trotliners and later by Korean vessels (Table 2).

The Chatham Rise fisheries now include: a seasonal trawl fishery for orange roughy (Hoplostethus atlanticus) in $800-1200 \mathrm{~m}$ on the northern, eastern, and southern slopes; exploitation of black oreo (Allocyttus niger) and smooth oreo (Pseudocyttus maculatus) stocks on the south-western and southern slopes; and a shallower multi-species trawl fishery on the northern Chatham Rise in depths down to 800 m .

Table 1: Japanese catches (t) of the major species from the Chatham Rise, 1972-77

	Total wetfish		Hoki		Barracouta		Warehou	
Year	A^{*}	B \dagger	A	B	A	B	A	B
1972	22641	192	1154	8	12038	4	1777	45
1973	18644	- \ddagger	4211	-	5397	-	4109	-
1974	16447	824	1263	484	8846	83	1693	34
1975	17365	2743	1802	1042	4745	53	1347	596
1976	18082	5601	1783	1813	4712	205	1343	962
1977	34896	13735	1744	4334	6347	2510	1913	2651

* The area from $42^{\circ} 00^{\prime}$ to $45^{\circ} 00^{\prime} \mathrm{S}$ west of $173^{\circ} 30^{\prime} \mathrm{E}$.
\dagger The rest of the Chatham Rise east of $173^{\circ} 30^{\prime} \mathrm{E}$.
\ddagger No catch reported.

During the summer arrow squid (Nototodarus sloanii) are fished by jig boats over shallow areas of the Chatham Rise and are caught near the Chatham Islands as a major by-catch of the trawl fishery.

Since the declaration of the New Zealand 200 n . mile Exclusive Economic Zone (EEZ) in 1978, deepwater fish stocks have been managed as controlled fisheries. Exploitation has been restricted by the setting of total allowable catch levels based on the most reliable stock assessment data available. As part of this process of stock assessments joint New Zealand-Japan trawl surveys were planned for 1983. In March and April 1983 stratified random trawl surveys were conducted on the Chatham Rise and the Snares shelf-Aucklands Shelf as joint programmes between the Japanese Far Seas Research Laboratory, the Japan Marine Fishery Resource Research Center (JAMARC), and the New Zealand Fisheries Research Division (FRD) (now part of MAFFish). This report presents the results from the Chatham Rise survey.

The main aims were to collect catch and biological data on hoki, barracouta, arrow squid, and other

Table 2: Combined Japanese-Korean longline catches (t) of ling from the Chatham Rise, 1975-80

Year	Catch	Year	Catch
1975	9269	1978	6405
1976	19381	1979	5347
1977	28265	1980	3540

commercial species and to record associated environmental data such as water temperature, weather and sea conditions, and bottom topography.

Hydrology

The Chatham Rise is a fairly shallow topographical feature which acts as a barrier to the southward movement of water at any depth greater than itself (Heath 1975). The hydrology of the Chatham Rise is dominated by the Subtropical Convergence Zone, which varies in width and in the distance it extends across the area. The variations are thought to be indirectly due to regular fluctuations in the East Australian Current, from which the Southland Current is derived (Heath 1975). The Southland Current is a northward-moving flow of mainly subtropical water, mixed with some Australasian subantarctic water, which moves up the east coast of the South Island close inshore.

Further east, a broad mass of cool subantarctic water also moves north. The boundary between these masses is the Southland Front. North of the Chatham Rise a warm tongue of subtropical water projects southwards along the North Island east coast. By limiting the southern flow of subtropical water the Chatham Rise determines the position where the subtropical water flowing south converges with cool subantarctic water flowing north.

Materials and methods

Survey area

This survey of the Chatham Rise middle depth (200-800 m) trawl stocks was conducted from 2 to 30 March 1983. The survey area was the part of EEZ area C from about the Pegasus Canyon to $44^{\circ} 30^{\prime} \mathrm{S}$ and area D (Chatham Rise) in waters shallower than 800 m , but outside the 12 n . mile territorial sea and the restricted fishing zone off the South Island east coast (Figure 2).

Vessel and gear

Shinkai Maru (a stern trawler chartered by JAMARC) was used. It has the following
specifications: length, 94.9 m ; tonnage, 3393 GRT; beam, 16.0 m ; maximum speed, 16.4 knots (kn); horsepower, 5000 PS at 230 rpm .

Two types of multi-panel trawl net were used during the survey (Appendix 1). The groundrope lengths were 83 m for net No. 81-2 and 96 m for net No. 81-3. No significant difference was observed in the performance of the nets. All stations except stations $9-13$ were sampled by net No. 81-2.

Twenty randomly selected cod-end meshes were measured and a mean measurement of 65.6 mm insideknot to inside-knot was obtained. This mesh size was assumed during all trawls. High-aspect steel trawl boards with inbuilt floatation were used to spread the net. These were 4.55 m high and 2.80 m wide - a total area of about $13 \mathrm{~m}^{2}$.

The position of the vessel was fixed by satellite navigation by use of a Toshiba Tosnav 706-H receiver interfaced with a Koden OR166 Omega receiver. The accuracy of the latter in New Zealand waters was uncertain because of the lack of close transmitting stations. If it is assumed that the inherent system error for this receiver is similar to that of other units of the same design (i.e., about $80-100 \mathrm{~m}$ root mean square ($0.04-0.05 \mathrm{n}$. mile) with an additional error of about 0.2 n. mile for each knot of unknown ship's velocity), positional error would be about 0.1 n . mile. Some positions may also have been based on direct reckoning time between position updates, but in general a fix about every 75 minutes would be expected at $43^{\circ} \mathrm{S}$ (Stansell 1978).

Ship speed was measured by a Hokushindenki electromagnetic log (EML-12), expected to be accurate to within 0.1 kn , interfaced with the satellite navigator. Trawl speed ranged from 2.4 to 4.8 kn (mean 3.3).

Bottom depth was recorded from a Kaijo Denki echo-sounder which operated at 24 kHz . In simultaneous use for much of the time were a Koden Chromascope fish finder (50 kHz) and a Simrad fish finder (TR101 transducer, HR800 recorder) (38 kHz). A Furuno Type NR 200 net recorder (200 kHz) was used on the headline, and it gave a bottom temperature reading with an accuracy of about $\pm 1^{\circ} \mathrm{C}$.

Trawl stations

The survey area was divided into 21 strata by the $200,400,600$, and 800 m isobaths (Figure 3). The area and station density for each stratum are given in Table 3. Station positions were generated from random number tapes before the survey began. The position of stations within each stratum was defined in terms of a 5 n . miles ${ }^{2}$ grid. The number of stations in each stratum was proportional to the size of that stratum.

The minimum number of stations per stratum was four. If the chosen position was unsuitable for trawling, such as at stations 32,108 , and 109 , the nearest trawlable area was sampled. Actual starting positions for each station are shown in Figure 4. All fishing was carried out during daylight (about 0505-1906 h New Zealand Standard Time).

If untrawlable bottom was encountered after fishing had begun, the net was flown above the bottom until suitable ground was found. The tow duration and recorded distance are the time the net actually fished on the bottom. The distance for these tows was calculated from the electromagnetic log. Headline height and board spread measurements were made to check that the net was fishing properly.

Trawl duration was usually 30 minutes except when the net was damaged. The starting time for each station was the time the net actually began to fish on the bottom, as observed by the net recorder. The end of each tow was the time the winches started to haul. All trawls were bottom trawls.

The distance between trawl boards was calculated (after Koyama 1974) for each station (except when weather and sea conditions made this operation dangerous) and was then used to calculate the spread between the wingtips of the trawl. This measurement is based on the assumption that the triangle made by the top of the cod-end and the two trawl boards is proportional to the smaller triangle defined by the net measured from the forward edge of the cod-end and each of the wingtips. The accuracy of this method of measurement decreases as warp lengths increase.

Table 3: Stratum area, station density, and depth sampled

			Station	Actual Stratum
	Area $\left(\mathrm{km}^{2}\right)$	No.	Density range $\left(\mathrm{km}^{2}\right)$	dempled (m) sam
1	768	4	192	$87-101$
2	989	4	247	$93-130$
3	1358	4	339	$225-325$
4	2071	4	518	$608-731$
5	3869	4	957	$489-579$
6	11346	8	1418	$437-556$
7	7957	5	1591	$622-735$
8	5584	4	1396	$292-380$
9	2456	4	614	$118-163$
10	1248	4	312	$130-353$
11	3704	4	926	$597-777$
12	7120	4	1780	$408-503$
13	12279	8	1535	$409-533$
14	5419	4	1355	$656-780$
15	19276	14	1483	$235-415$
16	1145	3	286	$214-237$
17	10482	7	1497	$610-809$
18	10838	9	1204	$411-583$
19	17190	14	1228	$325-507$
20	6160	5	1232	$639-805$
21	12320	9	1369	$139-375$

Catch weight and biological parameters

The total catch was sorted by species and weighed on platform scales to within $\pm 0.1 \mathrm{~kg}$ per fish box. It was sometimes necessary to calculate a major species catch weight from product weights after processing. Large catches of species not processed aboard (such as pale ghost shark (Hydrolagus sp.) or various species of deepwater dogfish) were boxed and a predetermined weight per fish box was applied to obtain a final species total weight.

The lengths of 100 fish of each major commercial species at each station were recorded on plastic punch cards and the fish were sexed. Longer fish (such as barracouta and hoki) were grouped by 2 cm intervals, smaller fish by 1 cm . A punch hole which occurred on a centimetre line was promoted to the higher 1 or 2 cm group.

In addition, at least one full biological examination was made daily for each major commercial species. These data included: total length (TL), mantle length (ML), or fork length (FL) (to the nearest millimetre); total body weight (g); sex; gonad weight and maturation; stomach contents (weight and fullness); and parasite numbers. Otoliths were collected for aging studies.

Figure 2: New Zealand 200 n. mile EEZ areas.

Biomass estimation

Biomass is used here as an index of abundance not as a measure of absolute abundance. Indices were calculated by the swept area method from data collected on randomly generated trawl stations. The following formulas were used:

$$
\begin{aligned}
B & =\left(\Sigma_{i} X_{i} A_{i}\right) / V \\
S B & =\left(\Sigma_{i} S_{i}^{2} A_{i}^{2}\right)^{1 / 2} / V
\end{aligned}
$$

where $B=$ biomass (t), $S B=$ standard error of B, $X_{i}=$ mean catch rate $\left(\mathrm{t} . \mathrm{km}^{-2}\right)$ in the i-th stratum, $A_{i}=$ area $\left(\mathrm{km}^{2}\right)$ in the i-th stratum, $V=$ species vulnerability, $S_{i}=$ standard error of X_{i}.

Comparison of the initial strata boundaries (see Figure 3) and the latest bathymetric charts produced
by FRD from recently collected soundings (Figure 5) show major differences. The actual bottom depths at stratum 16 were all deeper than 200 m , though this stratum is shown as a rise shallower than 200 m . In addition, there were bottom depths less than 400 m in stratum 19. Therefore, strata used for this survey should be regarded more as arbitrary divisions of the survey area which have some correlation with bottom depth rather than as boundaries which follow the actual depth contours.

Arbitrary values of one were assigned to vulnerability and accessibility for the following reasons:

1. As in previous surveys of this type neither the reaction of various fish species to the sampling gear nor the degree to which these species can avoid entrapment by the gear was known (Francis 1981).
2. The accessibility (i.e., the proportion of fish directly above the swept area of the gear) was not known.

Figure 3: Predetermined trawl stations in EEZ areas C and D (numbers refer to strata).

Figure 4: Actual trawl stations during the survey.

Figure 5: Revised bathymetry of the Chatham Rise and survey strata.

Therefore, it was assumed that there were no fish in the water column higher than the headline of the net and that all fish in the path of the net were vulnerable.

It was assumed that any increase in the density of fish at the net mouth as a result of shepherding by the doors and sweeps was compensated by escapment over
the extension wires, over the headline, and through the meshes of the net itself. Thus, the width between the wingtips was used to define the width of the swept area.

The method used for the calculation of stratum area is given in Appendix 2.

Results and discussion

Hydrology

A total of 33 expendable bathythermograph drops were made (Figure 6). No record of the drop at $43^{\circ} \mathrm{S}$ $176^{\circ} \mathrm{E}$ was obtained. The thermocline across the Chatham Rise is shown in Figure 7.

Isotherms at various depths have been plotted in Figure 8. The surface temperature contour shows a tongue of water pushing southwards over the Mernoo Bank region into the Canterbury Bight. Contours at 50,100 , and 200 m show a northwards movement of cooler water between the Mernoo Bank and the Reserve Bank.
There is a steep temperature gradient north-east of the Chatham Islands down to 800 m . In addition, there appears to be a back-eddy, down to 600 m , which may be caused by the Chatham Islands and Chatham Islands shelf acting as a barrier to the eastward flow
of water across the Chatham Rise. This eddy could not be confirmed because no sampling was done further east.
Ridgway (1975) noted a southward interruption of the eastward flow east of the Chatham Islands in both $34.3-34.9 \%$ isohalines and $9-11^{\circ} \mathrm{C}$ isotherms between 20 January and 9 February 1969.

Another prominent feature in depths over 400 m was the presence of much warmer water, $3-4^{\circ} \mathrm{C}$ higher, south-west of the Veryan Bank where the Chatham Rise joins the South Island slope.
Plots taken from the National Oceanographic and Atmospheric Agency satellite 7 during the survey time were examined. These four or five day composite plots gave surface temperatures for $1 \mathrm{~km}^{2}$ areas. The temperatures derived from the plots should be regarded more as relative rather than as absolute. Plots for weeks ending 7, 21, and 28 March 1983 showed

Figure 6: Expendable bathythermograph station positions.

Figure 7: Expendable bathythermograph profiles plotted by latitude along lines of longitude.
a southward tongue of warm water in the Mernoo Bank and the Reserve Bank area. This feature was less pronounced in the last plot.

The data were grouped by latitude and plotted by depth across the Chatham Rise (Figure 9). There was a general decrease in temperature from north to south. The warm cell of deeper water (down to more than 800 m) at $175^{\circ} \mathrm{E}$ is apparent in these data and could be a result of the passage of water from the Southland Front through the Mernoo Gap to the north-west. A similar, though less pronounced, region is present at 180°.

Catch rates and composition

The short sampling period of 29 days reduced the effect of seasonal variation and simplified the task of mapping the distribution and abundance of the most important species.

The plotted catch values represent only those fish vulnerable to bottom trawl gear. Other factors must also be taken into account: the presence of fish higher in the water column or in untrawlable ground and the escapment of small fish through the net meshes. Species taken during the survey are listed in Appendix 3.

Figure 7-continued.

The catch rates of the 17 most abundant commercial species are shown in Figures 10-26. Catch rates ($\mathrm{t} . \mathrm{km}^{-2}$) for major species are shown by depth and by temperature in Figure 27. These analyses are mean values at each depth and temperature range for all stations (i.e., nil values are included). A full catch summary is given in Appendix 4. Catch rates by stratum are given in Appendices 5 and 6.

Hoki

Hoki were the most common fish taken during the survey (Figure 10). They were caught in nearly every
trawl over 200 m . Catches were consistently large (mean catch rate $12.8 \mathrm{t} . \mathrm{km}^{-2}$). Catch rates were higher west of 180° and the highest were recorded from the area covered by a northward push of cooler water, particularly strata 4,5 , and 11 .

Pale ghost shark

Specimens taken during the survey appeared to be all one species. This chimaerid ranged deeper than the dark ghost shark and was present in most trawls made in the intermediate depths between 300 and 500 m (Figure 11).

Spiky oreo

Several good catches (over $9 \mathrm{t} . \mathrm{km}^{-2}$) of spiky oreo were taken during the survey (Figure 12). They were irregular components of the catch at deep stations and were not restricted to the southern slopes of the Chatham Rise, as were black oreo.

Spiny dogfish

Spiny dogfish were mainly limited to the shelf edge off Banks Peninsula, the Mernoo Bank, and the Veryan Bank (Figure 13). Small catches were recorded in other areas in shallow strata.

Black oreo

Several good hauls (over $11 \mathrm{t} . \mathrm{km}^{-2}$) of black oreo were made (Figure 14). This species was taken only over the southern slopes of the Chatham Rise in depths over 635 m and at times was caught with spiky oreo, though the latter were generally found in shallower water.

Ling

One good catch of ling ($28.8 \mathrm{t} . \mathrm{km}^{-2}$) was taken north-west of the Chatham Islands (Figure 15). Generally catches were small (under $0.5 \mathrm{t} . \mathrm{km}^{-2}$), but ling were taken in 83% of the trawls.

Barracouta

Catches of barracouta ranged from 0.1 to $10.0 \mathrm{t} . \mathrm{km}^{-2}$ and were restricted to shallower depths: mainly the shelf edge west of the Mernoo Gap, on the Mernoo Bank, and the shelf north-west of the Chatham Islands (Figure 16).

Hake

Small but consistent quantities of hake (mean catch rate $0.36 \mathrm{t} . \mathrm{km}^{-2}$) were taken and catches from the northern Chatham Rise tended to be larger (Figure 17).

Arrow squid

Arrow squid were present at most stations, though they only constituted about 1.4% of the total survey catch. However, it is possible that they were not caught while the net was fishing on the bottom, but while it was being raised or lowered. Highest catches (over $0.9 \mathrm{t} \mathrm{km}^{-2}$) were generally restricted to the Mernoo Bank, the Veryan Bank, and the shelf edge south-east of Banks Peninsula (Figure 18), where small squid ($10-12 \mathrm{~cm}$ ML) were common. Catches on the eastern Chatham Rise were lower (under $0.3 \mathrm{t} . \mathrm{km}^{-2}$), though one haul of $2.1 \mathrm{t} . \mathrm{km}^{-2}$ was taken north of the Chatham Islands.

Sea perch

Another common catch component in most hauls was sea perch, though many of the larger catches (over
$12.4 \mathrm{t} . \mathrm{km}^{-2}$) were in the shallower waters of the northern and central Chatham Rise just east of the Mernoo Bank (Figure 19). More than one species was taken, but the taxonomy of these fish is unresolved (C. Paulin pers. comm.). Juvenile sea perch were common around the Reserve Bank.

Giant stargazer

Giant stargazer were also common in shallower trawls (Figure 20). Some good catches (over $1.7 \mathrm{t} . \mathrm{km}^{-2}$) were taken. A mean catch of $0.4 \mathrm{t} . \mathrm{km}^{-2}$ was recorded.

Silver warehou

Silver warehou were caught mainly in shallower waters (under 450 m) (Figure 21). They were more common west of $178^{\circ} \mathrm{E}$. Their highest catch rates (over $1.7 \mathrm{t} . \mathrm{km}^{-2}$) were recorded in $200-300 \mathrm{~m}$. Small fish (about 200 mm FL) were abundant on the Mernoo Bank and the Reserve Bank.

Lookdown dory

Lookdown dory were caught at all except the shallowest stations (those under 142 m) (Figure 22).

Alfonsino

Alfonsino were taken at only 38 stations. Several large catches (up to $16 \mathrm{t} . \mathrm{km}^{-2}$) were made. Generally this species appeared to be more common on rugged slopes in 300-400 m (Figure 23).

Dark ghost shark

Dark ghost shark occurred mainly on shallower grounds west of $178^{\circ} \mathrm{E}$ north-west of the Chatham Rise and on the shelf edge off the South Island east coast (Figure 24).

Red cod

Catches were mostly restricted to the shelf west of the Mernoo Gap, though some small catches were made in shallower waters on the Chatham Rise, such as around the Veryan Bank and around the Chatham Islands (Figure 25).

Tarakihi

The highest tarakihi catch rates (over $18.7 \mathrm{t} . \mathrm{km}^{-2}$) were taken around the Pegasus Canyon and in shallower waters around the Chatham Islands (Figure 26). A few fish per haul were taken intermittently on shallow grounds on the northern Chatham Rise.

Deepwater dogfish

Large catches of various deepwater squalids, notably Deania and two species of Centroscymnus, were common at all but the shallower stations. Although they are not commercially harvested, the recovery of

Figure 8: Temperature $\left({ }^{\circ} \mathrm{C}\right)$ contours.
squalene from their livers is increasing the value of this by-catch. In addition, they are important because of the damage they cause to the nets and because they are probably the major predators and scavengers in these depths.

Other species

Several good catches (over $2 \mathrm{t} . \mathrm{km}^{-2}$) of spawning orange perch (Lepidoperca sp.) were taken north-west of the Chatham Islands and on the Reserve Bank.

Figure 8-continued.

Figure 8-continued.

Biomass estimates

Biomass estimates for the major species and all other species are given in Table 4. Biomass estimates by stratum are given in Appendix 7.

Hoki made up nearly 57% of the total biomass for the Chatham Rise in depths shallower than 800 m . A catch frequency histogram for hoki is shown in Figure 28. The consistently high catches generally reached 0.5 t per 30 minute haul.

Hoki

A length-weight regression for hoki was based on measurements from 525 fish $20-108 \mathrm{~cm}$ long. The equation $W=0.0055 L^{2.85}$ was obtained from this regression, where $W=$ weight (g) and $L=$ total length (cm).

Fish less than 45 cm TL constituted about 3.6% of the total weight of hoki; $46-54 \mathrm{~cm}, 11.3 \% ; 55-58 \mathrm{~cm}$, 8.0%; $59-66 \mathrm{~cm}, 32.9 \%$; over $66 \mathrm{~cm}, 44.2 \%$. From data collected during this survey and from previously collected unvalidated FRD age records, these percentages are considered to represent the $2+$ to $6+$ year classes (G. J. Patchell pers. comm.).

Kerstan and Sahrhage (1980) reported that hoki were mature at $57-65 \mathrm{~cm}$. Patchell (1982) regarded hoki less than 65 cm as immature and noted that females and males generally did not mature until over 70 and 60 cm respectively. Thus, 55.8% of the total length-frequency sample of 13762 hoki measured can be considered to be immature fish.

Comparison of the length-frequency data from this survey with that from spawning hoki on the west coast during winter 1982 (G. J. Patchell pers. comm.) showed the west coast spawning hoki were larger (Figure 29). Patchell (1982) also noted that Soviet data (Blagodyorov and Nosov 1978) suggested that most of the hoki taken by the Soviet fleet on the Chatham Rise during recent years were juveniles. It should be stressed
that the 60 mm cod-end mesh used during this survey would permit greater escapment of smaller fish, particularly those $20-40 \mathrm{~cm}$ long.

From the total biomass of hoki on the Chatham Rise (1772000t), the following indices were obtained: $2+$ year class, $63790 \mathrm{t} ; 3+, 200240 \mathrm{t}$; $4+$, 141760 t ; and $5+, 582990 \mathrm{t}$. Mature fish (i.e., over 66 cm TL) would constitute a total biomass index of about 783220 t , or 44.2% of the total hoki biomass index. Biomass estimates from other surveys for the Mernoo Bank and the Chatham Rise are given in Table 5.

Other species

Other important commercial species in the Chatham Rise fishery at depths to 800 m are black and smooth oreos, pale ghost shark, ling, hake, and sea perch.

Among the non-commercial species about 12 species of the family Macrouridae, notably javelin fish, unicorn rattail, and notable rattail represented nearly 10% of the total biomass. Javelin fish were the most abundant species. The biomass calculated for this group is lower than expected, probably because the long slender body shape of these species would have allowed considerable escapment through the cod-end meshes.

Other macrourids were generally classed as "rattails" for the purposes of biomass estimates because they were not considered to be of commercial interest. Various Coelorinchus species, mainly C. oliverianus, constituted the bulk of this group.

Deepwater squalids, mainly shovelnosed spiny dogfish (Deania calcea) and three species of Centroscymnus, were also a major catch component.

Problems with biomass estimation

The gear performance data for each station is included in Appendix 8. Parameters such as the headline height and board spread, observed speed (from the ship's log), and calculated speed (distance

Table 4: Biomass estimates* (t) for the major species and all other species caught on the Chatham Rise \dagger

Species	Species code					Biomass
		Lower bound	Biomass estimate	Upper bound	Coefficient of variation (\%)	\% of total (all species)
Hoki	HOK	1370487	1771718	2172950	11	56.6
Javelin fish	JAV	138943	169600	200.256	9	5.5
Pale ghost shark	GSP	73396	103394	133392	15	3.3
Rattails	RAT	102882	129175	155468	10	4.2
Shovelnosed spiny dogfish	SND	48326	83632	118938	21	2.7
Spiky oreo	SOR	47293	118361	189430	30	3.8
Spiny dogfish	SPD	21209	30052	38896	15	1.0
Black oreo	BOE	5248	95611	185974	47	3.1
Ling	LIN	31024	67559	104095	27	2.2
Barracouta	BAR	9783	28519	47255	33	1.0
Hake	HAK	38136	50800	63464	12	1.7
Arrow squid	ASQ	12905	27097	41290	26	0.9
Sea perch	SPE	35036	45745	56455	12	1.5
Giant stargazer	STA	23726	36907	50087	18	1.2
Silver warehou	SWA	12830	38573	64317	33	1.3
Lookdown dory	LDO	32547	40147	47747	9	1.3
Alfonsino	BYX	0	26334	66614	76	0.9
Dark ghost shark	GSH	11231	17633	24034	18	0.6
Red cod	RCO	0	6267	13220	55	0.2
Spineback	SBK	12063	17025	21987	15	0.6
Tarakihi	TAR	1755	5205	8655	33	0.2
Other species		274633	219009	148752		6.2
Total (all species)		2303453	3128363	3953276		100.0

* Lower and upper bounds ± 2.0 standard deviation. Vulnerability is assumed to be one.
\dagger Net width calculated for each station: minimum $=16.6 \mathrm{~m}$, mean $=28.3 \mathrm{~m}$, maximum $=37.7 \mathrm{~m}$. Distance towed ranged from 1.0 to 2.6 n . miles, mean 1.6 n . miles.
trawled in recorded time) were tested for significant correlations. Observed and calculated speed and door spread showed no significant correlation at the 5% level ($F_{1,121}=2.85$ and $F_{1,121}=1.3$). There was a significant negative correlation at the 5% level $\left(F_{1,121}=15.05\right)$ between headline height and door spread (i.e., gear width). However, there was a high proportion of variance, which probably reflected measurement error in the present method of proportional calculation. Therefore, a major parameter for the estimation of biomass indices, the width of the swept area, cannot be determined accurately.

Analysis of wingtip spread (which is calculated as a proportion of door spread) plotted against depth suggests that gear width increases with depth, to at least 300 m (Figure 30). Therefore, the wingtip spread for each station has been used to define the gear width in the biomass computations.

The difference in the abundance indices calculated in this manner, and those that resulted when a mean gear width from all stations was used, was more than 70000 t for hoki and 101000 t for all species. Although these differences are not great in terms of the final estimate (4 and 3% increase respectively), they highlight the need for the direct measurement of gear dimensions in trawls used for abundance estimation.

For the above reasons, and because variables such as accessibility and vulnerability could not be measured, the credibility of abundance estimates from this and all similar surveys must be suspect.

Actual observations of gear performance on all New Zealand trawl surveys has been limited. The only

Table 5: Hoki biomass estimates from this and other suryeys for the Mernoo Bank and the Chatham Rise

Survey year	Stock size (t) (min.-max.)	Vessel 1977^{*}	
	$212000-501000$	Shinkai Maru and various commercial	
$1978 \dagger$	225000	Various commercial	
$1979 \ddagger$	$140000-1000000$ (autumn)	Wesermünde	
1979	$34000-540000$ (winter)	Wesermünde	
1979	$100000-480000$ (spring)	Wesermünde	
$1968 \S$	180000	Various commercial	
1969	160000		
1970	170000		
1971	300000		
1972	150000		
1973	160000		
1974	175000		
1975	170000	Shinkai Maru	
1976	140000		
1977	130000		
$1983 \\|$	1770000		

* This estimate excluded the Mernoo Bank, from Francis and Fisher (1979).
\dagger From Anon. (1978).
\ddagger All 1979 estimates from Francis (1981).
§ 1968-77 estimates are from the Mernoo Bank, from Blagodyorov and Nosov (1978).
|| Estimates from this survey.
measure of trawl performance during fishing operations has been assessed from net recorder transmissions. This equipment indicates when the net reaches the bottom, shows the headline height and the presence of fish swimming under the headline, and supplies a crude bottom temperature reading. This information is adequate for standard commercial fishing operations, but is insufficient for stock abundance surveys.

Figure 9: Temperature (${ }^{\circ} \mathrm{C}$) profiles.

In addition to data supplied by the net recorder, minimum requirements should include: the constant monitoring of both trawl door and wingtip spread, some measure of the amount of fish passing over the headline, and the provision of extra monitoring equipment on the square and body of the trawl net to record the passage of fish down the net towards the cod-end.

This additional information would increase the accuracy of abundance estimates by increasing the precision of gear and area swept measurements and of the assessment of the density of fish schools, the time fish were caught relative to the length of total fishing time, and the escapment or avoidance of fish during the trawl.

Figure 9-continued.

Catch rate (kg per trawl)	
- 0	- 100-499.9
- 0.1-9.9	- ….......... 500-999.9
- 10-49.9 1000-4 999.9
- 50-99.9 > 5000

Figure 10: Hoki catch rates (see key on page 19).

Figure 11: Pale ghost shark catch rates (see key on page 19).

Figure 12: Spiky oreo catch rates (see key on page 19).

Figure 13: Spiny dogfish catch rates (see key on page 19).

Figure 14: Black oreo catch rates (see key on page 19).

Figure 15: Ling catch rates (see key on page 19).

Figure 16: Barracouta catch rates (see key on page 19).

Figure 17: Hake catch rates (see key on page 19).

Figure 18: Arrow squid catch rates (see key on page 19).

Figure 19: Sea perch catch rates (see key on page 19).

Figure 20: Giant stargazer catch rates (see key on page 19).

Figure 21: Silver warehou catch rates (see key on page 19).

Figure 22: Lookdown dory catch rates (see key on page 19).

Figure 23: Alfonsino catch rates (see key on page 19).

Figure 24: Dark ghost shark catch rates (see key on page 19).

Figure 25: Red cod catch rates (see key on page 19).

Figure 26: Tarakihi catch rates (see key on page 19).

Figure 27: Catch rates of the major species by temperature and depth.

Figure 28: Catch frequency of hoki by trawl.

Figure 29: Length-frequency distribution of hoki from the Chatham Rise and the west coast spawning population.

Biological observations

Biological data were collected for the major commercial species (Table 6). When possible, at least 20 fish were sampled for each station. The infestation of barracouta flesh by the cestode Gymnorhynchus thyrsitae was investigated for possible stock separation purposes. Additional information was collected for arrow squid, mainly female maturation, based on observations of the gonad, oviduct, and nidamental gland. Species for which sufficient information was collected are discussed below. (This biological information is held on computer file at the Fisheries Research Centre (New Zealand) and at the Far Seas Fisheries Research Laboratory (Japan).)

Hoki

All hoki examined were sexually immature and, with only one exception, were either in an undeveloped or, in the case of older fish, a resting gonad state. The ratio of males to females was about 2:3. The linear correlation between gonad weight for both sexes and the size and weight of the fish is shown in Figure 31.

Hoki stomachs contained various prawns (including mysid shrimps and cumaceans), salps, amphipods, isopods, and fish (mainly myctophids, but also rattails, javelin fish, silverside (Argentina elongata), and small morid cods).

Arrow squid

The ratio of males to females was $45: 55$. Most females greater than 30 cm ML had completed copulation (Figure 32). A mean mantle length of 28.7 cm was recorded for copulated females from both biological measurements and general length-frequency data.

Positive correlations were obtained between gonad weight and body weight for male and female squid (Figure 33) and between nidamental gland weight (also an index of maturity) and body weight and mantle length (Figure 34).

Table 6: Species sampled for biological observations

Species	No. of specimens
Hoki	525
Arrow squid	120
Barracouta	79
Silver warehou	80
Lookdown dory	20
Alfonsino	20
Tarakihi	20
Hake	35
Ling	40
Orange roughy	40
White warehou	20
Spiky oreo	20
Black oreo	80

Figure 30: Wingtip spread by depth.

Of the male squid, 51% were immature (i.e., they had small testes and empty spermatophoric sacs), and 49% were maturing. Of the female squid, 68% were immature, 8% were developing (eggs forming and the nidamental gland opaque), and 24% were mature (eggs in the oviduct and a large white nidamental gland).

About 48% of the stomachs contained food. Fish were found in 35% of non-empty stomachs, squid in 30%, and crustacea in 28%. Most food items occurred in stomachs of squid throughout the size range, but crustacea were found only in squid less than 26 cm ML.

Barracouta

The ratio of males to females was $1: 1$. The gonad stages of males ranged from immature to spent: 26% immature, 28% maturing, and 46% mature (running ripe or nearly spent). Females were either immature (65%) or maturing (35%). There was no apparent relationship between the size, weight, or gonad condition of these fish. Females from around the Chatham Islands were at a more advanced stage of gonad development.
Examination of the flesh for G. thyrsitae showed 69% of fish had some infestation and nearly 36% of these were heavily affected. Stomach contents were mainly squid, Munida, shrimps, and fish (most were small hoki, silver warehou, and myctophids).

Silver warehou

The ratio of males to females was $1: 1$. Most fish were immature or resting. Only 12.5% of females and 20.4% of males had begun to show any gonad development. No correlation was evident between gonad condition and size and weight of the fish. Salps were the dominant food item.

Black oreo

The ratio of males to females was $1: 1$. Most males (84%) were immature, about 15% were developing, and one spent fish was seen. More females were immature or undeveloped, and only two had any development of the ovary. Prey appeared to be diverse and included mysid shrimps, cumaceans, amphipods, and salps.

Hake

Some fish examined appeared to have recently spawned. Running ripe males were prevalent. Female gonad condition ranged from developing to nearly ripe.

Length-weight relationships

Length-weight relationships of some of the more important commercial species sampled are shown in Figure 35.

Size-frequency data

Size-frequency data were collected for 17 major species (Table 7).

Hoki were measured and usually sexed at almost every station. Length increased as bottom depth increased (Figure 36). There were modal peaks at about 40,50 , and 60 cm TL , which represented the $1+, 2+$, and $3+$ year classes (Fisheries Research Centre unpublished data). In 400-600 m there were still 50 and 60 cm peaks, but many more large: older fish. Hoki from the deepest stations ($600-800 \mathrm{~m}$) were mostly over 60 cm , in the $5+$ year class, but modes were difficult to distinguish over 70 cm . As product recovery decreases to an uneconomic level for the smaller fish, particularly for hoki less than about 60 cm , this size stratification by depth may provide an important natural protection for the juvenile stock on the Chatham Rise.
For arrow squid there were three distinct modal groups at 12, 19, and 24 cm ML (Figure 37). These groups may represent different spawning cohorts. More of the 19 cm group appeared to be females; however, it was difficult to differentiate the sex of smaller squid by use of the hectocotylised arm, which at this stage had just begun to develop. Therefore, immature squid may have been recorded as females. Most mature squid (over 28 cm ML) were females. No males over 31 cm were taken, whereas females up to 38 cm were caught.

Size-frequency data for other species are shown in Figure 38. The prominent mode of 19 cm FL for silver warehou was composed of fish which were almost all taken around the slopes of the Mernoo Bank.

There was a wide range of lengths of ling and lookdown dory. Both species are slow growing, which makes it difficult to isolate any modal groups from these data.

A broad range of lengths was recorded for white warehou. However, the small sample size limited further analysis.

There was only one major size peak for black oreo, which is consistent with other surveys which have shown a distinct group of smaller black oreo at the shallower end of their depth range and the absence of larger fish, though a modal peak at 28 cm was recorded (P. J. McMillan pers. comm.). There were two modes for spiky oreo, which favour shallower waters than black oreo.

Table 7: Species collected for size-frequency data
$\left.\begin{array}{lrr}\text { No. of times } \\ \text { sampled }\end{array} \quad \begin{array}{r}\text { Total fish } \\ \text { measured }\end{array}\right\}$

Figure 31: Hoki gonad weight plotted against body weight (males and females combined).

Figure 32: Length frequency of copulated and all female arrow squid.

Figure 33: Arrow squid gonad weight plotted against body weight.

Figure 34: Arrow squid nidamental gland weight plotted against mantle length and body weight.

Figure 35: Length-weight relationships.

Figure 36: Hoki length frequency by depth.

Figure 37: Arrow squid length frequency.

Figure 38: Length frequencies of other species.

Acknowledgments

We thank the following: the captain and crew of Shinkai Maru, A. Yatsu and M. Aizawa for assistance in data collection, and D. Esterman for the data analysis programs. The manuscript was critically appraised by D. A. Robertson, H. Hatanaka, P. J. McMillan, G. J. Patchell, and J. L. McKoy; their help is gratefully acknowledged.

References

Anon. 1978: On the biomass estimates and the potential yield of bottom fish in New Zealand waters. (Unpublished manuscript from Fishery Agency of Japan, held in Fisheries Research Centre library, Wellington.)
Blagodyorov, A. I. and Nosov, E. V. 1978: The biological basis of rational exploitation of Macruronus novaezelandiae. (Unpublished TINRO manuscript, English translation held in Fisheries Research Centre library, Wellington.)
Francis, R. C. and Fisher, K. A. 1979: Assessment of the deep-water fish resource of the New Zealand area. Fisheries Research Division Occasional Publication No. 21. 51 p.

Francis, R. I. C. C. 1981 : Stratified random trawl surveys of deepwater demersal fish stocks around New Zealand. Fisheries Research Division Occasional Publication No. 32. 28 p.
Heath, R. A. 1975: Oceanic circulation off the east coast of New Zealand. Memoir, N.Z. Oceanographic Institute, No. 55.80 p.
Kerstan, M. and Sahrhage, D. 1980: Biological investigations on fish stocks in the waters off New Zealand. Mitteilungen aus dem Institut für Seefischerei der Bundesforschungsanstalt für Fischerei, Hamburg, No. 29. 187 p.

Koyama, T. 1974: Study on the stern trawl. Bulletin of Tokai Regional Fisheries Research Laboratory 77: 171-247. (In Japanese, English translation held in Fisheries Research Centre library, Wellington.)
Patchell, G. J. 1982: The New Zealand hoki fisheries 1972-82. Fisheries Research Division Occasional Publication No. 38. 23 p.
Ridgway, N. M. 1975: Hydrology of the Bounty Islands region. Memoir, N.Z. Oceanographic Institute, No. 75. 27 p.
Roberts, L: G. 1965: Machine perception of three-dimensional solids. In Tippet, J. T., Berkowitz, D. A., Clapp, L. C., Koester, C. J., and Vanderburgh, A. Jr. (Eds.), "Optical and Electro-optical Information Processing', pp. 159-197. The Massachusetts Institute of Technology Press, Cambridge.
Robertson, D. A., Roberts, P. E., and Wilson, J. B. 1978: Mesopelagic faunal transition across the Subtropical Convergence east of New Zealand. N.Z. Journal of Marine and Freshwater Research 12(4): 295-312.
Robertson, D. A. and Mito, S. 1979: Sea surface ichthyoplankton off southeastern New Zealand, summer 1977-78. N.Z. Journal of Marine and Freshwater Research 13(3): 415-424.
Stansell, T. A. 1978: The transit navigation satellite system: status theory performance applications. Magnavox Government and Industrial Electronics Company. 83 p.

Appendix 1

Trawl net plans
(Large figures denote mesh size in terms of "knot to knot" and small figures denote the number of meshes.)

No. 81-2

Appendix 1-continued

No. 81-3

Appendix 2

The calculation of stratum area

Stratum areas were calculated by the following method. Digitised points from each stratum were converted to co-ordinates of latitude and longitude. The area of the stratum was then computed from its polyline representation (Roberts 1965). In general, for a closed polyline on n points (x_{i}, y_{i}), $i=0, n-1$, labelled clockwise around a polygonal boundary, the area of the polygon is:

$$
1 / 2 \sum_{i=1}^{n}\left(\mathrm{x}_{i} \mathrm{y}_{i+1}-\mathrm{x}_{i+1} \mathrm{y}_{i}\right)
$$

where subscript calculations are modulo n. The formula can be proved by considering it to be the sum of signed areas of triangles, each having a vertex at the origin, or of parallelograms constructed by dropping perpendiculars from the polyline points to an axis.

Appendix 3

Fish species taken during the survey

Scientific name

Agnatha

Eptatretidae
Eptatretus cirrhatus Hagfish

Elasmobranchii

Cetorhinidae

Cetorhinus maximus
Scyliorhinidae Apristurus spp.
Cephaloscyllium isabella Halaelurus dawsoni
Triakidae
Mustelus lenticulatus
Carcharhinidae
Galeorhinus galeus
Squalidae
Centrophorus squamosus
Centroscymnus crepidator
C. owstonii
C. plunketi

Deania calcea
Etmopterus baxteri
E. lucifer

Oxynotus bruniensis
Squalus acanthias
S. blainvillei

Dalatiidae
Dalatias licha
Narkidae
Typhlonarke aysoni

Rajidae

Arhynchobatis asperrimus
Pavoraja asperula
P. spinifera

Raja innominata
R. nasuta

Callorhinchidae
Callorhynchus milii

Common name

Hagfish

Basking shark
Deepsea catshark
Carpet shark
Dawson's catshark
Rig
School shark
Deepwater spiny dogfish
Deepwater dogfish
Owston's spiny dogfish
Plunket's dogfish
Shovelnosed spiny dogfish
Baxter's dogfish
Lucifer dogfish
Prickly dogfish
Spiny dogfish
Grey spiny dogfish
Seal shark
Blind electric ray
Long-tailed skate
Deepsea skate
Prickly deepsea skate
Smooth skate
Rough skate
Elephant fish

Chimaeridae	
Chimaera phantasma	Giant ghost shark
Hydrolagus novaezelandiae	Dark ghost shark
Hydrolagus sp.	Pale ghost shark
Rhinochimaeridae	
Harriotta raleighana	Long-nosed chimaera
Rhinochimaera pacifica	Wide-nosed chimaera
Teleostei	
Congridae	
Bassanago bulbiceps	Swollenheaded conger
Conger verreauxi	Conger eel
Halosauridae	
Halosaurus pectoralis	Halosaur
Notacanthidae	
Notacanthus sexspinis	Spineback
Argentinidae	
Argentina elongata	Silverside
Alepocephalidae	
Rouleina sp.	Slickhead
Gonorynchidae	
Gonorynchus gonorynchus	Sandfish
Chlorophthalmidae	
Chlorophthalmus nigripinnis	Cucumber fish
Paralepididae	
Magnisudis prionosa	Barracudina
Moridae	
Austrophycis marginata	Dwarf cod
Halargyreus johnsonii	Johnson's cod
Lepidion microcephalus	Smallheaded cod
Mora moro	Ribaldo
Pseudophycis bachus	Red cod
Tripterophycis gilchristi	Grenadier cod
Gadidae	
Micromesistius australis	Southern blue whiting
Merlucciidae	
Macruronus novaezelandiae	Hoki
Merluccius australis	Hake

Appendix 3-continued

Macrouridae	
Coelorinchus aspercephalus	Oblique banded rattail
C. biclinozonalis	Two banded rattail
C. bollonsi	Big-eye rattail
C. fasciatus	Banded rattail
C. innotabilis	Notable rattail
C. kaiyomaru	Kaiyo maru rattail
C. matamиa	Mahia rattail
C. oliverianus	Short-nosed rattail
Coryphaenoides serrulatus	Rattail
Coryphaenoides sp.	Long barbel rattail
Lepidorhynchus denticulatus	Javelin fish
Trachyrincus sp.	Unicorn rattail
Ophidiidiae	
Genypterus blacodes	Ling
Trachichthyidae	
Hoplostethus atlanticus	Orange roughy
H. mediterraneus	Silver roughy
Paratrachichthys trailli	Common roughy
Berycidae	
Beryx splendens	Alfonsino
Zeidae	
Capromimus abbreviatus	Capro dory
Cyttus novaezelandiae	Silver dory
C. traversi	Lookdown dory
Oreosomatidae	
Allocyttus niger	Black oreo
Neocyttus rhomboidalis	Spiky oreo
Pseudocyttus maculatus	Smooth oreo
Macrorhamphosidae	
Centriscops humerosus	Blue banded bellowsfish
C. obliquus	Red banded bellowsfish
Notopogon tilliei	Crested bellowsfish
Scorpaenidae	
Helicolenus sp.	Sea perch
Triglidae	
Chelidonichthys kumu	Red gurnard
Lepidotrigla brachyoptera	Scaly gurnard
Hoplichthyidae	
Hoplichthys haswelli	Deepsea flathead
Congiopodidae	
Alertichthys blacki	Alert pigfish
Congiopodus leucopaecilus	Southern pigfish
Psychrolutidae	
Neophrynichthys angustus	Pale toadfish
N. latus	Dark toadfish

Percichthyidae	
Polyprion moeone	Bass
P. oxygeneios	Hapuku
Serranidae	
Lepidoperca sp.	Orange perch
Apogonidae	
Epigonus lenimen	Big-eye cardinal fish
E. telescopus	Deepsea cardinal fish
Carangidae	
Trachurus spp.	Jack mackerel
Bramidae	
Brama brama	Ray's bream
Emmelichthyidae	
Emmelichthys nitidus	Redbait
Plagiogeneion rubiginosus	Ruby fish
Pentacerotidae	
Pseudopentaceros richardsoni	Southern boarfish
Cheilodactylidae	
Nemadactylus macropterus	Tarakihi
Latridae	
Latridopsis ciliaris	Moki
Latris lineata	Trumpeter
Mugiloididae	
Parapercis colias	Blue cod
P. gilliesi	Weever
Percophidae	
Hemerocoetes sp.	Opalfish
Uranoscopidae	
Kathetostoma giganteum	Giant stargazer
Gempylidae	
Rexea solandri	Southern kingfish
Thyrsites atun	Barracouta
Trichiuridae	
Lepidopus caudatus	Frostfish
Centrolophidae	
Centrolophus niger	Rudderfish
Hyperoglyphe antarctica	Bluenose
Icichthys australis	Ragfish
Seriolella brama	Common warehou
S. caerulea	White warehou
S. punctata	Silver warehou
Bothidae	
Arnoglossus scapha	Witch
Neoachiropsetta milfordi	Finless flounder
Pleuronectidae	
Pelotretis flavilatus	Lemon sole

Appendix 4

Catch summary

	Catch			Blue cod	115	
	Weight	\% of	Catch rate	Rubyfish	114	
Species	(kg)	total	(t. km^{-2})	Unicorn rattail	110	
Hoki	139305	55.3	12.78	Bluenose	108	
Javelin fish	12070	4.8	1.11	Smooth skate	105	
Pale ghost shark	9641	3.8	0.88	Dwarf cod	99	
Rattails	8654	3.4	0.79	Common roughy	92 88	
Shovelnosed spiny dogfish	7977	3.2	0.73	Crested bellowsfish	88	
Spiky oreo	7670	3.0	0.70	Rudderfish	70	
Spiny dogfish	5495	2.2	0.50	Lemon sole	69	
Black oreo	5171	2.1	0.47	Jack mackerel	66	
Ling	5081	2.0	0.47	Octopus	60	
Basking shark	5000	2.0	0.46	Octopus Capro dory	60 55	
Barracouta	4264	1.7	0.39	Carpet shark	51	
Hake	3709	1.5	0.34	Prickly dogfish	40	
Arrow squid	3565	1.4	0.33	Grey spiny dogfish	39	
Sea perch	3349	1.3	0.31	Deepsea skate	39	
Giant stargazer	3213	1.3	0.29	Silver roughy	37	
Silver warehou	2977	1.2	0.27	Umbrella octopus	37	
Lookdown dory	2772	1.1	0.25	Wide-nosed chimaera	36	
Alfonsino	2040	0.8	0.19	Blind electric ray	34	
Dark ghost shark	1640	0.7	0.15	Rig	33	
Red cod	1473	0.6	0.13	Crab (unspecified)	31	
Spineback	1057	0.4	less than 0.10	Trumpeter	29	
Long-nosed chimaera	888	0.4		Johnson's cod	29	
Swollenheaded conger	780	0.3		Southern boarfish	28	
Tarakihi	779	0.3		Moki	23	
Plunket's dogfish	776	0.3		Red gurnard	20	
Deepwater dogfish	763	0.3		Finless flounder	19	
Squid (unspecified)	757	0.3		Dawson's catshark	14	
Banded bellowsfish	756	0.3		Weever	14	
Silverside	723	0.3		Deepwater spiny dogfish	13	
Ribaldo	710	0.3		Giant ghost shark	13	
White warehou	675	0.3		Deepsea catshark	12	
Skate (unspecified)	619	0.2		Conger eel	11	
Orange perch	545	0.2		Southern spider crab	10	
Baxter's dogfish	497	0.2		Southern spider crab Southern pigfish	10 9	
Hapuku	454	0.2		Southern pigfish Halosaur	8	
Lucifer dogfish	430	0.2		Ragfish	8	
Cardinal fish	398	0.2		Barracudina	7	
Owston's dogfish	389	0.2		Scaly gurnard	6	
Silver dory	373	0.1		Scaly gurnard Hagfish	5	
Orange roughy	237	0.1		Hagfish	5	
School shark	233	0.1		Redbait Elephant fish	4	
Seal shark	232	0.1		Pale toadfish	3	
Scampi	228	0.1		Pale toadfish	3	
Ray's bream	221	0.1		Southern blue whiting	2	
Warty squid	216	0.1		Southern blue whiting	2	
Toadfish (pale)	182	0.1		Lucifer dogfish	2	
Witch	181	0.1		Shark (unidentified)	2	
Bass	170	0.1			2	
Southern kingfish	161	0.1		Cod (unidentified)	1	
Smooth oreo	155	0.1		Alert pigfish	1	
Spiny flathead	151	0.1				
Common warehou	139	0.1		Total catch		252103 kg
Black slickhead	121			Total distance trawled		385.40 km
Frostfish	115			Total catch rate		654.1 t. km^{-2}

Appendix 5

Mean catch rates ($\mathbf{t} . \mathbf{k m}^{-\mathbf{2}}$) and standard deviations for the 10 major species and all others by stratum*

Stratum	$\begin{gathered} \text { Area } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$	No. of stations	HOK	JAV	GSP	RAT	SND	SOR	SPD	BOE	LIN	BAR	Other	Species \dagger
														Total
1	768	4	0.00	0.00	0.00	0.00	0.00	0.00	2.97	0.00	0.00	2.97	9.19	15.13
			(0.00) \ddagger	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(1.19)	(0.00)	(0.01)	(2.73)	(7.85)	(9.24)
2	989	4	0.00	0.00	0.00	0.00	0.00	0.00	8.81	0.00	0.01	6.15	3.99	18.96
			(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(5.10)	(0.00)	(0.02)	(5.33)	(2.28)	(4.36)
3	1358	4	37.19	0.34	0.84	0.47	0.00	0.00	2.80	0.00	0.41	1.34	22.56	65.94
			(59.67)	(0.47)	(1.67)	(0.43)	(0.00)	(0.00)	(0.95)	(0.00)	(0.36)	(2.23)	(33.95)	(94.27)
4	2071	4	37.55	2.06	0.60	0.85	4.32	0.87	0.00	0.00	0.40	0.00	3.12	49.77
			(41.82)	(2.36)	(0.31)	(0.68)	(2.93)	(0.84)	(0.00)	(0.00)	(0.13)	(0.00)	(1.68)	(49.09)
5	3869	4	41.59	1.72	1.01	1.21	1.80	0.14	0.00	0.00	0.38	0.00	2.57	50.42
			(41.66)	(1.62)	(0.76)	(1.17)	(0.81)	(0.28)	(0.00)	(0.00)	(0.17)	(0.00)	(0.50)	(38.87)
6	11346	8	19.06	0.70	1.04	1.93	0.43	0.04	0.16	0.00	0.36	0.00	2.28	25.99
			(11.57)	(0.35)	(0.67)	(1.05)	(0.51)	(0.12)	(0.21)	(0.00)	(0.26)	(0.00)	(1.30)	(10.61)
7	7957	5	7.93	1.96	1.34	1.55	0.08	4.65	0.00	7.56	0.33	0.00	2.46	27.87
			(7.46)	(1.37)	(0.30)	(1.04)	(0.09)	(6.12)	(0.01)	(11.38)	(0.28)	(0.00)	(1.22)	(14.21)
8	5584	4	8.20	0.08	0.00	0.28	0.00	0.00	0.57	0.00	0.04	0.06	5.85	15.08
			(4.18)	(0.09)	(0.00)	(0.20)	(0.00)	(0.00)	(0.40)	(0.00)	(0.04)	(0.06)	(3.85)	(5.72)
9	2456	4	0.00	0.00	0.00	0.00	0.00	0.00	1.54	0.00	0.07	2.32	5.62	9.55
			(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(2.14)	(0.00)	(0.14)	(1.98)	(6.19)	(7.23)
10	1248	4	15.92	0.00	10.61	0.45	0.00	0.00	2.33	0.00	0.14	0.00	5.91	35.35
			(25.38)	(0.00)	(21.21)	(0.59)	(0.00)	(0.00)	(2.81)	(0.00)	(0.18)	(0.00)	(4.83)	(42.87)
11	3704	4	59.41	3.41	0.44	0.35	10.07	2.30	0.00	0.00	0.70	0.00	4.92	81.60
			(65.62)	(3.34)	(0.21)	(0.26)	(8.84)	(2.08)	(0.00)	(0.00)	(0.41)	(0.00)	(1.76)	(65.34)
12	7120	4	27.85	1.50	0.77	0.79	0.05	0.00	0.00	0.00	0.57	0.00	3.22	34.75
			(17.53)	(1.22)	(0.55)	(0.60)	(0.06)	(0.00)	(0.01)	(0.00)	(0.17)	(0.00)	(0.97)	(18.26)
13	12279	8	11.16	1.11	1.41	1.62	0.11	0.05	0.02	0.00	0.47	0.00	3.21	19.15
			(11.27)	(0.79)	(0.98)	(1.28)	(0.20)	(0.09)	(0.02)	(0.00)	(0.11)	(0.00)	(1.62)	(12.64)
14	5419	4	11.77	1.24	1.23	1.07	0.06	7.38	0.00	3.38	0.25	0.00	3.02	29.40
			(9.27)	(0.70)	(0.23)	(0.78)	(0.09)	(9.45)	(0.00)	(4.07)	(0.15)	(0.00)	(0.93)	(12.39)
15	19276	14	10.31	0.78	0.27	1.47	0.00	0.00	0.10	0.00	0.43	0.02	4.98	18.36
			(8.68)	(0.98)	(0.53)	(1.85)	(0.00)	(0.00)	(0.12)	(0.00)	(0.47)	(0.05)	(3.90)	(9.65)
16	1145	3	0.00	0.00	0.00	0.14	0.00	0.00	0.28	0.00	0.12	0.50	11.59	12.63
			(0.00)	(0.00)	(0.00)	(0.19)	(0.00)	(0.00)	(0.13)	(0.00)	(0.21)	(0.41)	(5.50)	(5.68)
17	10482	7	2.51	3.00	0.35	0.45	1.51	1.37	0.00	0.01	0.28	0.00	3.71	13.19
			(1.14)	(1.65)	(0.31)	(0.14)	(1.17)	(0.89)	(0.00)	(0.02)	(0.19)	(0.00)	(1.65)	(3.44)
18	10838	9	5.33	1.00	0.38	0.43	0.10	0.01	0.02	0.00	0.33	0.00	2.91	10.51
			(2.94)	(0.63)	(0.28)	(0.26)	(0.28)	(0.03)	(0.06)	(0.00)	(0.29)	(0.00)	(1.34)	(3.22)
19	17190	14	9.20	1.17	0.76	0.63	0.02	0.01	0.04	0.00	0.46	0.00	2.44	14.74
			(8.25)	(1.38)	(0.33)	(0.36)	(0.03)	(0.05)	(0.10)	(0.00)	(0.22)	(0.01)	(1.26)	(8.80)
20	6160	5	9.48	1.67	0.30	0.46	0.94	2.38	0.00	2.77	0.19	0.00	3.29	21.48
			(14.70)	(0.87)	(0.27)	(0.18)	(0.74)	(3.72)	(0.00)	(6.08)	(0.22)	(0.00)	(1.93)	(13.99)
21	12320	9	1.55	0.23	0.19	0.13	0.00	0.00	0.00	0.00	1.58	0.92	2.82	7.43
			(2.32)	(0.27)	(0.38)	(0.11)	(0.00)	(0.00)	(0.00)	(0.00)	(4.36)	(2.06)	(1.58)	(5.37)

* Net width calculated for each station: minimum $=16.6 \mathrm{~m}$, mean $=28.3 \mathrm{~m}$, maximum $=37.7 \mathrm{~m}$. Distance towed ranged from 1.0 to 2.6 n . miles, mean 1.6 n . miles.
\dagger Species codes are given in Table 4.
\ddagger Standard deviations are in parentheses.

Appendix 6

Mean catch rates (t.km ${ }^{-2}$) and standard deviations for 10 other major species by stratum*

* Net width calculated for each station: minimum $=16.6 \mathrm{~m}$, mean $=28.3 \mathrm{~m}$, maximum $=37.7 \mathrm{~m}$. Distance towed ranged from 1.0 to
2.6 n . miles, mean 1.6 n . miles.
\dagger Species codes are given in Table 4.
\ddagger Standard deviations are in parentheses.

Appendix 7

Biomass estimates (t) by stratum*

Stratum	$\begin{gathered} \text { Area } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$	No. of stations	HOK	JAV	GSP	RAT	SND	SOR	SPD	BOE	LIN	BAR	Other	Species \dagger
														Total
1	768	4	0	0	0	0	0	0	2283	0	3	2279	7057	11621
2	989	4	0	0	0	0	0	0	8711	0	8	6084	3951	18754
3	1358	4	50506	458	1135	643	0	0	3802	0	551	1824	30633	89551
4	2071	4	77757	4270	1241	1759	8946	1809	0	0	822	0	6468	103070
5	3869	4	160904	6655	3923	4674	6973	534	0	0	1484	0	9938	195085
6	11346	8	216238	7941	11784	21885	4823	493	1777	0	4086	0	25844	294871
7	7957	5	63072	15615	10651	12365	628	37023	37	60136	2627	0	19604	221758
8	5584	4	45782	451	0	1539	0	0	3205	0	237	313	32681	84208
9	2456	4	0	0	0	0	0	0	3784	0	170	5705	13802	23462
10	1248	4	19871	0	13236	562	0	0	2902	0	169	0	7376	44116
11	3704	4	220039	12648	1630	1289	37300	8512	0	0	2606	0	18221	302246
12	7120	4	198283	10708	5508	5608	338	0	19	0	4078	0	22894	247437
13	12279	8	136987	13638	17361	19880	1325	639	199	0	5717	0	39364	235111
14	5419	4	63792	6734	6655	5809	351	39976	0	18316	1355	0	16347	159336
15	19276	14	198711	14953	5220	28419	0	0	2023	0	8371	314	95966	353977
16	1145	3	0	0	0	159	0	0	321	0	137	576	13266	14459
17	10482	7	26291	31451	3719	4691	15777	14387	0	81	2974	0	38844	138216
18	10838	9	57735	10851	4110	4683	1121	125	233	0	3522	0	31520	113902
19	17190	14	158226	20074	13048	10788	260	209	756	0	7947	30	41972	253311
20	6160	5	58412	10276	1849	2827	5788	14655	0	17077	1171	0	20284	132339
21	12320	9	19111	2877	2325	1594	0	0	0	0	19524	11394	34708	91533
	143579	126												

Stratum	Area (km^{2})	No. of stations	$\overline{\text { HAK }}$	ASQ	SPE	STA	SWA	LDO	BYX	GSH	RCO	SBK	TAR	Species
														Total
1	768	4	0	201	253	439	121	0	0	0	3398	0	1322	5735
2	989	4	0	380	606	440	105	0	0	460	128	0	222	2341
3	1358	4	0	3180	3	303	319	214	0	1258	360	0	51	5687
4	2071	4	515	0	157	214	0	333	4	0	0	206	0	1429
5	3869	4	2292	180	907	195	322	1279	0	0	38	0	0	5213
6	11346	8	4189	1077	1617	1566	2720	2710	0	0	74	1277	22	15252
7	7957	5	1862	0	272	473	0	752	0	0	0	3251	0	6610
8	5584	4	142	2434	1847	4198	15675	370	0	4404	285	0	35	29389
9	2456	4	0	5350	281	2382	2147	0	0	0	282	0	186	10629
10	1248	4	60	3360	108	1335	1174	70	0	16	30	0	0	6152
11	3704	4	6798	0	898	311	0	1089	3	0	0	220	0	9319
12	7120	4	5115	96	5521	610	689	2581	164	451	0	731	0	15957
13	12279	8	6363	78	5005	477	1975	6715	0	0	0	3842	0	24455
14	5419	4	769	27	503	360	0	3781	0	0	0	2366	0	7807
15	19276	14	7971	1651	17926	9918	4993	3448	23240	8182	1177	841	39	79386
16	1145	3	0	3776	1124	1866	728	0	0	2065	9	0	35	9604
17	10482	7	3718	0	868	276	0	1614	103	796	0	1430	0	8804
18	10838	9	7010	370	2085	928	1475	6323	540	0	6	184	0	18920
19	17190	14	3057	963	3959	3910	5803	7546	1862	0	107	1066	0	28272
20	6160	5	904	0	227	330	0	634	141	0	0	1611	0	3847
21	12320	9	36	3975	1577	6375	329	690	278	0	372	0	3293	16925

* Net width calculated for each station: minimum $=16.6 \mathrm{~m}$, mean $=28.3 \mathrm{~m}$, maximum $=37.7 \mathrm{~m}$. Distance towed ranged from 1.0 to
2.6 n . miles, mean 1.6 n . miles.
\dagger Species codes are given in Table 4.

Appendix 8

Performance data for trawl stations

Trawl No.	Duration (h)	Depth (m)	Headline height (m)	Board (m)	Wingtip spread (m)	Observed speed*	Calculated speed \dagger	Distance (n. mile)	Warp length (m)
1	0.50	716	10.0	100.0	22.2	2.5	2.6	1.3	1300
2	0.50	611	9.5	119.0	26.4	3.8	3.8	1.9	1100
3	0.50	493	8.5	127.8	28.4	4.8	4.8	2.4	950
4	0.41	300	9.5	107.8	23.9	3.6	4.4	1.8	600
5	0.50	164	9.0	120.5	26.8	3.2	3.2	1.6	400
6	0.50	386	9.0	110.6	24.6	3.6	3.6	1.8	750
7	0.50	293	10.0	109.1	24.2	3.2	3.2	1.6	600
8	0.35	122	9.5	94.0	20.9	4.2	4.3	1.5	300
9	0.50	124	8.0	93.7	18.5	3.8	3.8	1.9	280
10	0.50	369	10.0	0.0	23.7	3.4	3.6	1.8	722
11	0.50	131	9.0	84.3	16.6	4.2	4.2	2.1	272
12	0.50	478	8.0	150.9	29.8	3.0	3.0	1.5	900
13	0.50	744	10.0	151.8	30.0	3.0	2.8	1.4	1350
14	0.50	616	10.0	112.3	24.9	3.6	3.6	1.8	1088
15	0.50	551	9.0	151.0	33.5	3.2	3.2	1.6	950
16	0.38	461	10.0	0.0	28.4	2.6	2.6	1.0	818
17	0.50	576	9.0	129.8	28.8	3.8	3.8	1.9	1050
18	0.50	306	10.0	120.2	26.7	2.4	2.4	1.2	600
19	0.50	100	10.0	88.0	19.5	3.6	3.6	1.8	250
20	0.50	86	10.0	94.2	20.9	3.6	3.6	1.8	236
21	0.50	95	9.0	97.0	21.5	4.4	4.4	2.2	250
22	0.50	104	10.0	92.6	20.6	3.2	3.2	1.6	250
23	0.50	277	9.0	129.3	28.7	3.4	3.4	1.7	600
24	0.50	95	9.0	101.5	22.5	3.2	3.2	1.6	250
25	0.50	131	10.0	101.0	22.4	3.4	3.2	1.6	300
26	0.50	92	10.0	86.5	19.2	3.4	3.4	1.7	239
27	0.50	322	9.5	135.3	30.0	2.6	2.6	1.3	650
28	0.50	438	10.0	134.5	29.9	3.2	3.2	1.6	850
29	0.50	127	10.0	96.8	. 21.5	3.2	3.2	1.6	318
30	0.50	218	9.0	99.3	22.0	3.6	3.6	1.8	500
31	0.38	476	8.5	111.2	24.7	3.1	3.4	1.3	950
32	0.41	727	8.0	131.6	29.2	3.6	3.7	1.5	1300
33	0.50	737	9.0	132.4	29.4	3.8	3.8	1.9	1265
34	0.50	555	8.0	118.5	26.3	3.3	3.2	1.6	1017
35	0.50	487	9.0	151.7	33.7	3.2	3.2	1.6	950
36	0.50	461	9.0	128.4	28.5	3.4	3.4	1.7	917
37	0.41	515	9.0	125.5	27.9	3.0	3.2	1.3	950
38	0.50	618	8.0	129.8	28.8	2.9	2.8	1.4	1150
39	0.50	703	7.0	161.8	35.9	3.0	3.0	1.5	1300
40	0.50	667	9.0	121.2	26.9	2.6	2.6	1.3	1180
41	0.50	522	9.0	140.5	31.2	3.3	3.4	1.7	922
42	0.50	363	8.0	131.0	29.1	3.2	3.2	1.6	750
43	0.50	126	9.0	101.3	22.5	3.2	3.2	1.6	340
44	0.50	284	8.0	112.7	25.0	2.8	2.8	1.4	600
45	0.50	155	10.0	108.3	24.0	3.1	3.0	1.5	350
46	0.45	696	9.0	139.0	30.9	3.1	3.3	1.5	1300
47	0.50	664	9.5	129.1	28.7	2.8	2.8	1.4	1200
48	0.50	548	10.0	139.1	30.9	3.0	3.0	1.5	1000
49	0.65	480	8.0	130.3	28.9	3.2	2.5	1.6	950
50	0.50	518	9.0	132.6	29.4	2.9	3.8	1.9	950
51	0.50	780	9.5	108.4	24.1	3.2	3.2	1.6	1350
52	0.50	525	9.0	136.6	30.3	2.8	2.8	1.4	1000
53	0.63	488	8.0	116.0	25.8	3.2	2.5	1.6	950
54	0.50	654	9.0	132.1	29.3	3.3	3.4	1.7	1200
55	0.50	457	10.0	126.3	28.5	3.0	3.0	1.5	867
56	0.50	407	10.0	123.5	27.4	3.2	3.2	1.6	750
57	0.50	418	9.5	133.2	29.6	3.1	3.0	1.5	900
58	0.58	791	9.0	121.4	27.0	2.7	2.8	1.6	1450
59 60	0.58	514	9.5	133.0	29.5	2.7	2.8	1.6	918
60 61	0.80	333	9.0	140.1	31.1	3.6	2.3	1.8	680
61 62	0.58	388	8.0	127.2	28.2	2.8	2.8	1.6	800
62	0.96	363	10.0	115.9	25.7	3.0	1.6	1.5	700
63	0.50	396	9.0	121.2	26.9	2.8	2.8	1.4	800
64	0.50	405	9.5	123.5	27.4	3.5	3.4	1.7	750
65	0.50	460	8.5	153.7	34.1	3.5	3.4	1.7	850
66	0.50	415	9.0	125.2	27.8	3.2	3.2	1.6	800
67	0.61	385	9.0	129.2	28.7	3.2	2.6	1.6	750
68	0.50	455	10.0	134.5	29.9	3.4	3.4	1.7	850
69	0.50	476	9.0	169.8	37.7	3.3	5.2	2.6	918
70	0.50	479	9.0	130.7	29.0	2.9	2.8	1.4	918

Appendix 8-continued

Trawl No.	Duration (h)	Depth (m)	Headline height (m)	Board spread (m)	Wingtip spread (m)	Observed speed*	Calculated speed \dagger	Distance (n. mile)	Warp length (m)
71	0.50	734	8.5	122.8	27.3	3.2	3.2	1.6	1300
72	0.50	454	8.0	137.4	30.5	3.4	3.4	1.7	900
73	0.50	372	9.5	123.6	27.4	3.0	3.0	1.5	750
74	0.50	207	8.5	129.8	28.8	3.6	3.6	1.8	468
75	0.50	376	8.0	131.7	29.2	3.6	3.6	1.8	790
76	0.65	474	9.0	145.6	32.3	3.0	2.3	1.5	925
77	0.50	635	8.5	143.4	31.8	3.1	3.2	1.6	1250
78	0.50	805	8.0	117.8	26.2	3.0	3.0	1.5	1450
79	0.50	656	10.0	165.1	36.7	2.8	2.8	1.4	1200
80	0.50	458	9.0	144.2	32.0	3.2	3.2	1.6	900
81	0.50	332	9.0	123.0	27.3	3.4	3.4	1.7	650
82	0.35	280	8.0	139.3	30.9	2.8	2.9	1.0	650
83	0.50	295	8.0	131.0	29.1	3.6	3.6	1.8	650
84	0.50	713	8.0	115.3	25.6	2.8	2.8	1.4	1250
85	0.58	746	8.5	0.0	28.4	3.4	3.4	2.0	1300
86	0.66	774	8.0	116.3	25.8	3.3	3.3	2.2	1300
87	0.50	592	8.0	137.7	30.6	3.0	3.0	1.5	1050
88	0.50	135	8.0	119.8	26.6	3.0	3.0	1.5	322
89	0.50	475	8.5	146.4	32.5	3.5	3.6	1.8	900
90	0.50	270	8.5	142.6	31.7	3.4	3.4	1.7	550
91	0.50	338	8.5	139.2	30.9	4.0	4.0	2.0	650
92	0.50	439	9.0	129.5	28.8	4.0	4.0	2.0	830
93	0.50	461	8.0	139.6	31.0	2.8	2.8	1.4	900
94	0.50	459	8.5	143.0	31.7	3.3	3.2	1.6	850
95	0.50	415	8.5	142.7	31.7	3.5	3.6	1.8	822
96	0.50	750	9.0	141.3	31.4	3.6	3.6	1.8	1322
97	0.50	808	8.0	140.6	31.2	3.1	3.0	1.5	1422
98	0.50	520	9.0	127.0	28.2	3.0	3.0	1.5	950
99	0.50	612	8.0	124.0	27.5	4.0	4.0	2.0	1150
100	0.50	659	8.0	129.8	28.8	3.4	3.4	1.7	1150
101	0.50	468	8.0	142.1	31.5	2.8	2.8	1.4	950
102	0.50	511	8.5	146.7	32.6	3.2	3.2	1.6	917
103	0.50	424.	9.0	139.2	30.9	3.2	3.2	1.6	800
104	0.50	501	8.0	121.7	27.0	2.6	2.6	1.3	900
105	0.50	646	8.5	154.9	34.4	2.9	2.8	1.4	1100
106	0.50	444	8.0	151.1	33.5	3.6	3.6	1.8	800
107	0.50	411	8.5	128.0	28.4	3.6	3.6	1.8	700
108	0.50	404	8.0	131.0	29.1	3.0	3.0	1.5	717
109	0.50	381	9.0	145.1	32.2	3.6	3.6	1.8	777
110	0.65	386	8.0	150.4	33.4	3.6	2.8	1.8	785
111	0.50	631	8.0	129.8	28.8	3.2	3.2	1.6	1150
112	0.50	389	9.0	145.0	32.2	3.0	3.0	1.5	717
113	0.50	336	9.0	131.0	29.1	2.8	2.8	1.4	650
114	0.50	239	9.0	122.5	27.2	3.2	3.2	1.6	477
115	0.50	220	8.5	112.7	25.0	2.8	2.8	1.4	450
116	0.50	239	9.0	124.0	27.5	3.2	3.2	1.6	450
117	0.50	214	9.0	104.0	23.1	3.4	3.4	1.7	400
118	0.50	255	9.0	135.8	30.2	3.6	3.6	1.8	527
119	0.50	276	8.5	136.2	30.2	3.4	3.4	1.7	577
120	0.50	374	8.0	142.2	31.6	3.6	3.6	1.8	700
121	0.50	384	8.5	141.0	31.3	3.4	3.4	1.7	750
122	0.50	282	8.5	138.0	30.6	3.6	3.6	1.8	567
123	0.50	349	9.0	138.7	30.8	3.8	3.8	1.9	640
124	0.50	356	8.0	119.5	26.5	3.6	3.6	1.8	700
125	0.50	409	8.5	131.0	29.1	3.0	3.0	1.5	800
126	0.50	606	9.0	147.0	32.6	3.8	3.8	1.9	1200
127	0.63	765	8.0	154.0	34.2	3.3	2.5	1.6	1450

* From the ship's log.
\dagger Distance trawled in recorded time.

