# Trawl survey of hoki and associated species on the Chatham Rise November-December 1989

M. E. Livingston K. A. Schofield

New Zealand Fisheries Technical Report No. 41 ISSN 0113-2180

# Trawl survey of hoki and associated species on the Chatham Rise, November-December 1989

M. E. Livingston K. A. Schofield

New Zealand Fisheries Technical Report No. 41 1995 Published by MAF Fisheries Wellington 1995

ISBN 0-478-04634-0

Inquiries to: The Editor, MAF Fisheries Greta Point P O Box 297, Wellington, New Zealand.

The New Zealand Fisheries Technical Report series in part continues the Fisheries Research Division Occasional Publication series. The New Zealand Fisheries Occasional Publication series contains mainly conference proceedings and bibliographies.

Edited by M. F. Beardsell Set in 10 on 11 Times Roman Typeset by Datacom *express* Printed by Madison Printing Company Limited Cover photograph by Kathy Schofield

# Contents

|                           |               |              |               |           | P               | age |
|---------------------------|---------------|--------------|---------------|-----------|-----------------|-----|
| Abstract                  | ••            |              | 12            | ••        |                 | 5   |
| Introduction              |               |              |               | ••        |                 | 5   |
| Objectives                |               |              | 1772/         |           |                 | 6   |
| Methods                   |               |              | 1225          | ••        | 14              | 6   |
| Vessel and gear           |               |              | 330           |           |                 | 6   |
| Survey area and des       | sign          | 91.          | 100           | 22        | ::              | 6   |
| Catch sampling            |               |              | ••            | 9         |                 | 6   |
| Bathymetry                |               |              |               | 22        | ÷               | 7   |
| Hydrology                 |               |              |               |           |                 | 7   |
| <b>Biomass</b> estimation |               |              |               | ÷.        | ž               | 7   |
| Length frequency d        | istributions  | <b>M</b> (   |               | 2         |                 | 8   |
| Results                   |               |              |               | **        | ••              | 9   |
| Gear performance a        | and station c | overage      |               |           |                 | 9   |
| Hydrology                 |               |              |               | 22        |                 | 9   |
| Catch summary             |               |              | ••            | -         | ••              | 9   |
| Catch rates               | 3 <b>9.8</b>  | <del></del>  | ••            | **        |                 | 9   |
| <b>Biomass</b> estimates  | (             |              | ••            | ž.        | ÷               | 12  |
| Size composition          | 5 <b>4</b> 4  | 82).         | -             | 22        | 22              | 12  |
| Stomach contents          | 9.88          | ×*1:         |               | **        | <b>12</b>       | 12  |
| Gonad condition           | 1.414         | <b>1</b> 50  | 3 <b>3</b> 33 |           |                 | 14  |
| Discussion                |               | ••           | *             | 22        | 22              | 15  |
| Acknowledgments           |               |              | -             |           | 89.1            | 17  |
| References                |               | ***          |               |           | <b>1</b> 21 - 2 | 18  |
| Appendix 1: Station da    | ata           |              | ••            | а<br>И    | ē.              | 19  |
| Appendix 2: Species ta    | aken during   | the survey   | ••            | **        | 24.5            | 21  |
| Appendix 3: Biomass of    | estimates an  | d coefficier | its of vari   | ation     |                 |     |
| for the main ITQ ar       | nd bycatch sp | pecies by st | ratum, gr     | ouped     |                 |     |
| by depth                  | . <del></del> | ••           |               |           | 227             | 24  |
| Appendix 4: Scaled len    | ngth frequen  | cies of mal  | e and fen     | nale hoki |                 |     |
| by stratum                | ••            |              |               |           |                 | 26  |

### Abstract

# Livingston, M. E. & Schofield, K. A. 1995: Trawl survey of hoki and associated species on the Chatham Rise, November-December 1989. *N.Z. Fisheries Technical Report No. 41.31* p.

A random trawl survey of the Chatham Rise was carried out in November-December 1989 by *Amaltal Explorer*. The survey area was bounded by latitudes 42° and 45° S and longitudes 172° E and 175° W, and covered depths of 200–800 m. The main aim of the survey was to obtain relative biomass estimates for hoki (*Macruronus novaezelandiae*) and other commercial species. Length frequency and biological information on gonad condition and diet were also collected. Hoki made up 46% of the catch from a total of 107 stations. Other important species included silver warehou (*Seriolella punctata*), black oreo (*Allocyttus niger*), pale ghost shark (*Hydrolagus* sp.), hake (*Merluccius australis*), and ling (*Genypterus blacodes*).

The relative biomasses of hoki, ling, ghost sharks, and several other species were considerably lower in 1989 than in 1983 and 1986. This may be due to the different timing of the surveys (March in 1983, July in 1986) and to seasonal differences in catchability, or to differences in cohort strength in an area that is predominantly a nursery ground for juvenile fish. Interpretation of the declines is difficult because the relative fishing power of the vessels used is unknown. However, this survey does provide information on relative size structure, recruitment strength, and distribution of fish species at depths of 200–800 m on the Chatham Rise.

## Introduction

The fishery for hoki (*Macruronus novaezelandiae*) is New Zealand's largest with a Total Allowable Commercial Catch (TACC) of 220 000 t. Hoki are caught in depths of 200–800 m throughout the Exclusive Economic Zone (EEZ). Though most of the catch used to be taken off the west coast of the South Island (WCSI) during the spawning season (Sullivan & Cordue 1992), it is increasingly caught on the Chatham Rise and in the Sub-Antarctic area.

Currently, hoki are managed as two stocks: a larger, western stock that spawns on the WCSI during winter but otherwise resides in the Sub-Antarctic area, and a smaller, eastern stock that spawns in Cook Strait during winter but otherwise resides on the Chatham Rise (Livingston 1990). Although there are no differences in the mitochondrial DNA from the two stocks (P. J. Smith, MAF Fisheries Greta Point, pers. comm.), adult hoki from the two stocks differ morphometrically and have different growth rates (Livingston *et al.* 1992).

Previous trawl surveys of hoki around the South Island have shown that outside the spawning season up to 80% of adult biomass is found south of New Zealand, and up to 90% of juvenile biomass is found on the Chatham Rise (Hurst *et al.* 1988). (Adult fish are over 65 cm total length (TL).) Prerecruits (less than 35 cm TL) are found around most coastal areas of the South Island (Patchell 1982), but the Chatham Rise is the only area that has significant juvenile biomass (Fenaughty & Uozumi 1989, Livingston *et al.* 1991).

It appears that the bulk of larval and juvenile hoki recruit to the Chatham Rise, and as they approach sexual maturity (about 4–5 years) up to 80% of them recruit to the Sub-Antarctic area and so eventually to the WCSI spawning fishery. The remainder move to deeper waters on the Chatham Rise and then to the east coast spawning fishery (Livingston *et al.* 1992).

Acoustic surveys and commercial catch per hour have been used to monitor relative changes in spawning biomass on the west coast (Cordue 1991, Sullivan 1991, Vignaux 1992). In 1989, off-season trawl surveys were carried out on the Chatham Rise and in the Sub-Antarctic area to assess relative changes in the population since similar surveys were carried out there in 1983 (Hatanaka *et al.* 1989a, 1989b). Preliminary biomass estimates from the surveys were discussed by Hurst & Schofield (1990), and the Sub-Antarctic area survey was described in detail by Livingston & Schofield (1993).

In this report, we further analyse the biomass, length frequency, and biological data collected during the 1989 Chatham Rise survey, and compare the results, particularly for hoki, with those from previous surveys.

#### Objectives

The main objectives of the survey were as follows.

- 1. To map the distribution and estimate the abundance of hoki and associated fish species at depths of 200–800 m on the Chatham Rise.
- 2. To gather length frequency and other biological information on hoki, hake, ling, silver warehou, and other commercial species.
- 3. To take sufficient water temperature measurements to define any major water mass characteristics within the survey area.
- 4. To obtain bathymetric data to update existing survey charts.

## Methods

#### Vessel and gear

Amaltal Explorer, a New Zealand factory trawler owned by Amaltal Fishing Company Limited, was used for the survey. It has the following specifications: overall length, 65 m; beam, 12 m; gross tonnage, 1000 t; horsepower, 2700; maximum speed, 14 kn.

A high-opening bottom trawl net with a 60 mm codend, 90 m sweeps, and 55 m bridles with Super Vee trawl doors of 1800 kg ( $6.5 \text{ m}^2$ ) was used (*see* Livingston & Schofield (1993) for the net plan). A Scanmar 400 system provided data on doorspread, headline height, water temperature, and depth.

#### Survey area and design

The survey took place between 25 November and 18 December 1989 in an area bounded by latitudes 42° 50′ S to 45° S, longitudes 172° E to 175° W in depths of 200–800 m. The total survey area of 135 870 km<sup>2</sup> was divided into 24 strata by area and depth (Figure 1). The 107 stations sampled were allocated in proportion to the area of each stratum, with a minimum of 3 stations per stratum (Table 1). Station densities averaged one station to 1270 km<sup>2</sup>. Each station within a stratum was selected randomly with a minimum distance of 5 km between stations.

A single-phase stratified random trawl survey design (*after* Francis 1981) was used, as in previous hoki surveys. Tows were about 3 n. miles long and were made during daylight hours only (defined as the period between 30 min after official sunrise to 30 min before official sunset). An average of 4.7 tows per day was achieved. Tow and gear parameters are given in Table 2.

#### **Catch sampling**

The catch at each station was sorted into species and weighed on motion-compensating electronic scales to the nearest 0.1 kg. When the catch was over 1.5 t, the weight of the main species was estimated from the number of filled fish cases. Any rare or unusual fish were kept for the Museum of New Zealand collection.

# Table 1: Stratum areas, numbers of stations, and station density

|              | Area               |           | No. of stations | Station<br>density |
|--------------|--------------------|-----------|-----------------|--------------------|
| Stratum      | (km <sup>2</sup> ) | Allocated | Completed       | (km <sup>2</sup> ) |
| 600–800 m    | ()                 |           |                 |                    |
| 1            | 2 394              | 3         | 2               | 1:1197             |
|              | 2 765              | 3         | 3               | 1 922              |
| 2<br>3       | 8 917              | 7         | 6               | 1:1486             |
| 4            | 5 1 4 6            | 4         | 4               | 1:1287             |
| 5            | 5 554              | 4         | 4               | 1:1389             |
| 6            | 7 641              | 6         | 6               | 1:1274             |
| 400–600 m    |                    |           |                 |                    |
| 7            | 4 929              | 4         | 4               | 1:1232             |
| 8            | 3 625              | 3         | 3               | 1 : 1 208          |
| 9            | 5 740              | 4         | 4               | 1 🛛 1 435          |
| 10           | 9 824              | 8         | 6               | 1 : 1 637          |
| 11           | 6 887              | 6         | 6               | 1:1148             |
| 12           | 6 997              | 6         | 7               | 1:1000             |
| 13           | 7 463              | 6         | 6               | 1:1244             |
| 14           | 5 766              | 5         | 5               | 1 : 1 153          |
| 15           | 5 880              | 5         | 5               | 1:1176             |
| 16           | 4 695              | 4         | 4               | 1:1174             |
| 17           | 6 845              | 5         | 5               | 1 : 1 369          |
| 200–400 m    |                    |           |                 |                    |
| 18           | 4 637              | 4         | 3               | 1:1546             |
| 19           | 8 189              | 7         | 5               | 1 ; 1 638          |
| 20           | 9 2 9 9            | 8         | 7               | 1:1328             |
| 21           | 2 515              | 3         | 2               | 1:1258             |
| 22           | 3 893              | 3         | 3               | 1:1298             |
| 23           | 5 532              | 4         | 4               | 1:1383             |
| 24           | 737                | 3         | 3               | 1: 246             |
| Total (mean) | 135 870            | 115       | 107             | (1 : 1 270)        |

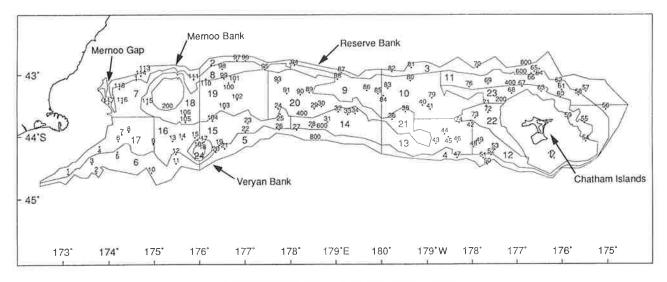



Figure 1: Survey area showing strata and station positions.

Samples of up to 300 hoki were routinely measured (total length) and sexed. Length frequency data were gathered for all other ITQ species and for some commercial non-ITQ species.

At each station, 20 individuals of the four main species (hoki, hake, ling, and silver warehou) were chosen at random to obtain information on lengthweight relationships, reproductive condition, and diet by recording the total or fork length, total body weight, sex, gonad stage and weight, and stomach fullness, species composition, and state of digestion.

#### **Bathymetry**

Bathymetric data were collected throughout the survey area. Depths were recorded from a Furuno FCV 161 ET echosounder, and position was measured by a Trimble Series 3 global positioning system and atomic clock or taken from satellite navigation fixes.

#### Table 2: Gear parameters

| Tow length (n. miles)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>107 | Mean<br>3.01<br>3.60 | <i>s.d.</i><br>0.25<br>0.19 | Range<br>2.3-4.9<br>3-4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|-----------------------------|-------------------------|
| Tow speed (kn)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107      | 3.60                 | 0.19                        | 3-4                     |
| 200–400 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |                             |                         |
| Headline height (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26       | 9.81                 | 1.14                        | 7–12                    |
| Doorspread (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26       | 128.11               | 4.82                        | 116-137                 |
| 400–600 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |                             |                         |
| Headline height (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55       | 9.34                 | 1.00                        | 8–12                    |
| Doorspread (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 55       | 132.69               | 4.61                        | 121–145                 |
| 600–800 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |                             |                         |
| Headline height (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26       | 9.48                 | 1.05                        | 8–11                    |
| Doorspread (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26       | 133.55               | 5.20                        | 126-145                 |
| Total depth range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                      |                             |                         |
| Headline height (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107      | 9.49                 | 1.05                        | 7–12                    |
| Doorspread (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107      | 131.79               | 5.21                        | 116-145                 |
| Addison and a second se | L 00     |                      |                             |                         |

Wingspread assumed to be 30 m.

Ratio of doorspread to wingspread is 4.4 : 1.

#### Hydrology

Surface water temperatures were recorded from the ship's hull-mounted thermistor which was calibrated with a hand-held mercury thermometer. Bottom temperature at each station was obtained from sensors (part of the Scanmar system, claimed in the manual as accurate to 0.1 °C) mounted on the trawl net.

#### **Biomass estimation**

When survey results are to be used to obtain biomass indices, it is important that the area swept by the trawl gear is accurately monitored, and that gear performance is noted. Gear performance was assessed tow by tow as consistency of headline height and doorspread within a tow, distance towed with gear on the bottom, and tow speed. Tows were excluded if headline height or doorspread were consistently 20% above or below average, or if the tow was less than 2 n. miles long.

Biomass indices were estimated by the areaswept method (Francis 1984) assuming that fish were randomly and evenly distributed over the bottom within a stratum; fish distribution did not extend above the headline height of the net; all fish in the path of the doors were caught; and the herding effects of the doors, sweeps, and bridles were constant.

Biomass indices presented here assume that the doors define the effective area of influence of the gear on the fish. They are not absolute biomass indices as the true catchability of the species is unknown.

Biomass indices and coefficients of variation were calculated as follows:

$$B = \Sigma \left( X_i \, a_i \right) / cb$$

$$S_B = \sqrt{S_i^2 a_i^2} / cb$$

.

where B is biomass (t),  $S_B$  is the standard error of B,  $X_i$  is the mean catch rate (kg.km<sup>-2</sup>), b is the net mouth opening (m), c is the catchability coefficient, and  $S_i$  is the estimated standard error of  $X_i$ .

#### Length frequency distributions

Length frequency data have been standardised by proportion of catch sampled, distance towed, and stratum area, and so represent the population sampled rather than the measured sample.

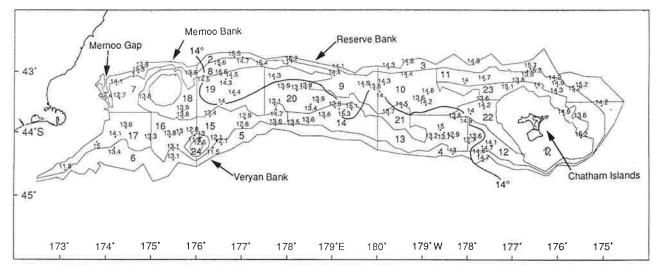



Figure 2: Sea surface temperatures.

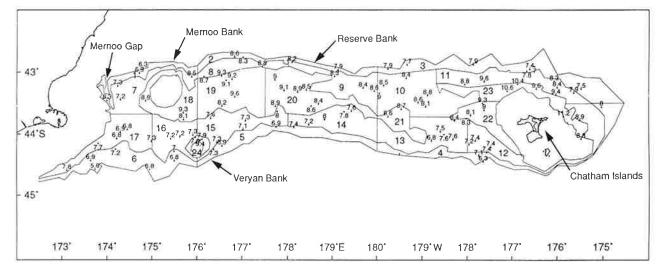



Figure 3: Bottom temperatures.

#### Gear performance and station coverage

A total of 107 stations was successfully completed (Appendix 1). Five stations fell on rough ground or outside the depth range and alternative positions were trawled. Stations 75 and 77 targeted hake and were excluded from the analyses, as were nine stations where gear performance was unsatisfactory.

Doorspread increased slightly, but not significantly, with depth in both areas (see Table 2), and exceeded the theoretical value of 100 m. Headline height ranged from 7.0 to 12.3 m (mean 9.5 m): warp length was adjusted during all tows to try to achieve a standard headline height of 10 m.

Islands (Figure 3). Temperature differences between surface and bottom were about 4-5 °C, though this varied with location.

#### **Catch summary**

The total catch was 138 646 kg, of which 46% was hoki. Silver warehou formed 11% of the catch, black oreo 8%, pale ghost shark 6%, ling 3%, and hake 1.5% (Table 3). In total, 107 species of fish and squid were caught (Appendix 2). Table 4 gives the species sampled, the number of samples, the number of fish measured, and species sex ratios.

#### **Hydrology**

The Subtropical Convergence Zone, as defined by the 14 °C isotherm, lay along the crest of the Chatham Rise, from east of Mernoo Bank to the Chatham Islands (Figure 2). Slightly cooler water was evident in the Mernoo Gap. Bottom temperatures were highest in shallow waters on Mernoo Bank, Veryan Bank, and at the Chatham

#### **Catch rates**

The mean catch rates of the main ITQ and bycatch species by stratum are given in Table 5. Hoki, ling, and lookdown dory were distributed throughout the survey area in depths of 200–800 m. Silver warehou and white warehou were found in depths of less than 600 m, and stargazers were

Table 3: Total biomass estimates, coefficients of variation (c.v.), and catch for the major species

|                           | Catch  | % of        |       | Biomass | C. V.   | % of  |
|---------------------------|--------|-------------|-------|---------|---------|-------|
|                           | (kg)   | total       | Occ.* | (t)     | (%)     | total |
| Hoki                      | 63 852 | 46.1        | 105   | 101 048 | 10      | 45    |
| Hoki (≥ 65 cm)            | -      | <del></del> | 100   | 43 855  | 12      | -     |
| Hoki (≥ 55 cm)            | 1      | 300 E       |       | 62 491  | 14      |       |
| Silver warehou            | 15 000 | 10.8        | 63    | 21 769  | 72      | 10    |
| Black oreo                | 11 384 | 7.7         | 22    | 19 827  | 28      | 9     |
| Pale ghost shark          | 7 661  | 5.5         | 96    | 11 415  | 8       | 5     |
| Ling                      | 4 756  | 3.4         | 103   | 8 043   | 9       | 4     |
| Other macrourid rattails  | 4 535  | 3.3         |       | 7 802   |         | 3     |
| Javelinfish               | 4 676  | 3.4         | 98    | 7 585   | 14      | 3     |
| Spiky oreo                | 3 457  | 2.5         | 21    | 5 746   | 36      | 3     |
| Shovelnosed spiny dogfish | 2 851  | 2,1         | 59    | 4 785   | 10      | 2     |
| Lookdown dory             | 2 554  | 1.8         | 105   | 4 323   | 6       | 2     |
| Hake                      | 2 079  | 1.5         | 65    | 3 576   | 19      | 2     |
| Slender mackerel          | 2 005  | 1.4         | 13    | 3 703   | 44      | 2     |
| White warehou             | 1 949  | 1.4         | 61    | 3 266   | 30      | 1     |
| Giant stargazer           | 1 308  | 0.9         | 59    | 2 083   | 22      | 0.9   |
| Longnosed chimaera        | 1 230  | 0.9         | 56    | 2 109   | 18      | 0.9   |
| Seaperch                  | 905    | 0.7         | 90    | 1 586   | 11      | 0.7   |
| Alfonsino                 | 953    | 0.7         | 41    | 1 490   | 55      | 0.7   |
| Spotted spiny dogfish     | 746    | 0.5         | 45    | 1 458   | 19      | 0.7   |
| Ribaldo                   | 736    | 0.5         | 58    | 1 259   | 11      | 0.6   |
| Smooth skate              | 703    | 0.5         | 31    | 1 2 2 4 | 23      | 0.5   |
| Baxter's dogfish          | 634    | 0.5         | 26    | 1 099   | 28      | < 0.5 |
| Dark ghost shark          | 529    | 0.4         | 10    | 1 1 9 0 | 45      | < 0.5 |
| Rudderfish                | 384    | 0.3         | 28    | 632     | 23      | < 0.5 |
| Silver dory               | 330    | 0.2         | 10    | 590     | 56      | < 0.5 |
| Smooth oreo               | 260    | 0.2         | 16    | 453     | 48      | < 0.5 |
| Total                     |        | 138 646     |       |         | 223 532 | 10    |

\*Occ. = number of tows in which each species occurred.)

– = not calculated.

generally caught in depths of less than 400 m. Javelinfish and ribaldo were found deeper than 400 m. Hake, black oreo, and spiky oreo were concentrated below 400 m. Hake were most prevalent in the north of the survey area, spiky oreos in the northeast, black oreos in the south, and pale ghost shark in the southwest.

Hoki (Figure 4) and ling (Figure 5) were widely distributed. Catch rates of juvenile hoki were highest in 200-400 m depths on the Reserve Bank (stratum 20) and Veryan Bank (stratum 24). The catch rates of hake were highest on the north Chatham Rise (Figure 6), particularly in depths of 400-600 m (strata 8-10).

Catch rates of silver warehou (Figure 7) were very low, except near the Veryan Bank (strata 15 and 24) and northeast of the Chatham Islands (strata 22 and 23).

Appendix 2 gives the occurrence by stratum of all species caught.

#### Table 4: Numbers of samples (samp.) and fish measured and percentage of females

|                       |        |        | Length freque | ncy samples |         | Biologic | al samples* |
|-----------------------|--------|--------|---------------|-------------|---------|----------|-------------|
|                       | No. of |        |               | No. of fish | Percent | No. of   | No, of      |
|                       | samp.  | Total  | Male          | Female      | female  | samp.    | fish        |
| Alfonsino             | 3      | 253    | 124           | 65          | 34      | 0        | 0           |
| Barracouta            | 2      | 13     | 0             | 13          | 100     | 0        | 0           |
| Black oreo            | 10     | 1 487  | 751           | 736         | 49      | 6        | 120         |
| Hake                  | 63     | 437    | 220           | 212         | 49      | 62       | 325         |
| Hoki                  | 104    | 17 286 | 7 336         | 9 912       | 57      | 97       | 1 372       |
| Jack mackerel         | 5      | 388    | 257           | 131         | 34      | 2        | 22          |
| Ling                  | 102    | 1 356  | 743           | 613         | 45      | 101      | 1 078       |
| Rudderfish            | 1      | 7      | 4             | 3           | 43      | 0        | 0           |
| Silver warehou        | 46     | 1 353  | 729           | 622         | 46      | 6        | 106         |
| Smooth oreo           | 7      | 244    | 118           | 126         | 52      | 0        | 0           |
| Southern blue whiting | 1      | 25     | 17            | 8           | 32      | 0        | 0           |
| Spiky oreo            | 12     | 1 023  | 578           | 445         | 43      | 1        | 10          |
| Tarakihi              | 1      | 7      | 5             | 2           | 29      | 0        | 0           |
| White warehou         | 5      | 85     | 45            | 40          | 47      | 0        | 0           |

\*Biological samples include individual length and weight, gonad stage, stomach contents, and otolith collection.

|              |            |        | -       |     | -   | -   |     |     |     |     |        |         |
|--------------|------------|--------|---------|-----|-----|-----|-----|-----|-----|-----|--------|---------|
|              |            |        |         |     |     |     |     |     |     |     | Specie | s code* |
| Stratum      | HOK        | SWA    | BOE     | GSP | HAK | LIN | JAV | SOR | LDO | WWA | STA    | RIB     |
| 200–400 m    |            |        |         |     |     |     |     |     |     |     |        |         |
| 18           | 543        | 16     | 0       | 0   | < 1 | 31  | 3   | 0   | 23  | 4   | 17     | 0       |
| 19           | 619        | 34     | 0       | 0   | 6   | 40  | 6   | 0   | 14  | 17  | 45     | 0       |
| 20           | 1 172      | 12     | 0       | 100 | 3   | 36  | 1   | 0   | 27  | 56  | 35     | 0       |
| 21           | 951        | 31     | 0       | 98  | 11  | 57  | 5   | 0   | 45  | 101 | 117    | 0       |
| 22           | 769        | 384    | 0       | 80  | 8   | 85  | 18  | 0   | 66  | 188 | 13     | 0       |
| 23           | 402        | 358    | 0       | 42  | 14  | 15  | 50  | 59  | 6   | 24  | 55     | 0       |
| 24           | 2 993      | 954    | 0       | 671 | 0   | 67  | 0   | 0   | 11  | 34  | 102    | 0       |
| 400–600 m    |            |        |         |     |     |     |     |     |     |     |        |         |
| 7            | 1 118      | 24     | 0       | 140 | 52  | 106 | 81  | 2   | 19  | 7   | 5      | 14      |
| 8            | 1 409      | < 1    | 0       | 5   | 58  | 100 | 47  | 12  | 17  | 1   | < 1    | 5       |
| 9            | 629        | 0      | 0       | 45  | 60  | 44  | 52  | 14  | 37  | 5   | 3      | 1       |
| 10           | 342        | 17     | 0       | 42  | 85  | 54  | 24  | 0   | 34  | 3   | 2      | 1       |
| 11           | 290        | 11     | 0       | 19  | 33  | 71  | 43  | 297 | 41  | 34  | 15     | 4       |
| 12           | 1 168      | 42     | 8       | 81  | 15  | 78  | 150 | 105 | 60  | 16  | 21     | 13      |
| 13           | 843        | 39     | 0       | 76  | 15  | 38  | 18  | 0   | 58  | 2   | 6      | 2       |
| 14           | 1 523      | 17     | < 1     | 157 | 17  | 66  | 172 | 0   | 107 | 20  | 1      | 5       |
| 15           | 990        | 2 701  | 8       | 183 | 17  | 45  | 43  | 0   | 36  | 118 | 5      | 4       |
| 16           | 559        | 11     | 4       | 98  | 5   | 87  | 36  | 0   | 24  | 3   | 11     | 13      |
| 17           | 1 108      | 8      | 6       | 149 | 6   | 105 | 66  | 0   | 21  | 2   | 5      | 22      |
| 600–800 m    |            |        |         |     |     |     |     |     |     |     |        |         |
| 1            | 120        | 0      | 0       | 165 | 6   | 70  | 14  | 214 | 4   | 0   | 0      | 22      |
| 2            | 828        | 0      | 0       | 60  | 144 | 104 | 202 | 109 | 26  | 0   | 13     | 18      |
| 3            | 158        | < 1    | 4       | 22  | 44  | 35  | 81  | 175 | 19  | 14  | 5      | 14      |
| 4            | 115        | 0      | 331     | 46  | 4   | 46  | 53  | 26  | 7   | 0   | 3      | 28      |
| 5            | 1 192      | 2      | 508     | 168 | 17  | 109 | 98  | 0   | 29  | 0   | 0      | 20      |
| 6            | 352        | < 1    | 1 976   | 154 | 11  | 37  | 75  | 0   | 10  | < 1 | 0      | 36      |
| * Species on | don ara ai | in Ann | andix 0 |     |     |     |     |     |     |     |        |         |

#### Table 5: Mean catch rates (kg.km<sup>-2</sup>) of the main ITQ and bycatch species by stratum

\* Species codes are given in Appendix 2,

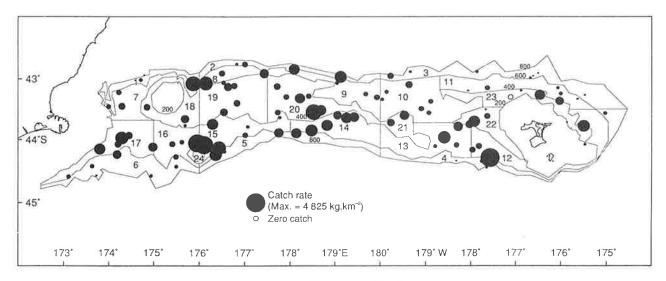



Figure 4: Catch rates of hoki.

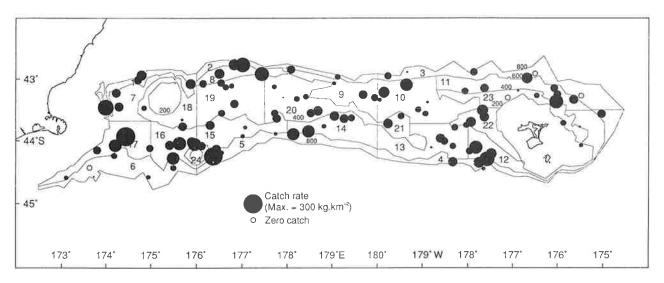



Figure 5: Catch rates of ling.

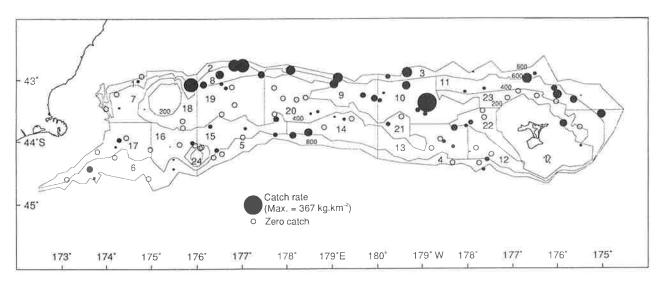



Figure 6: Catch rates of hake.

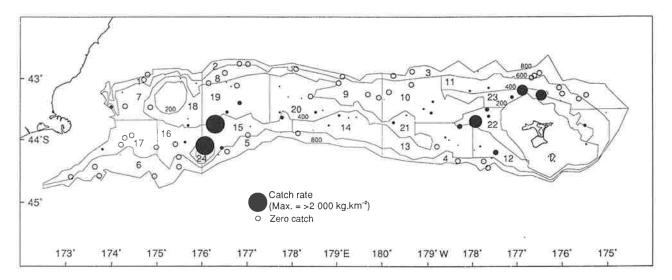



Figure 7: Catch rates of silver warehou.

#### **Biomass estimates**

The estimated total biomass of demersal fish in the survey area was about 224 000 t: hoki dominated (46%), and silver warehou and black oreo were the second and third most abundant species (*see* Table 3). The coefficient of variation for all species except silver warehou and spiky oreo was less than 30%. Females formed the greater portion of the biomass of hoki (Table 6) and hake. The sex ratios from the biomass estimates of other species were close to 50: 50.

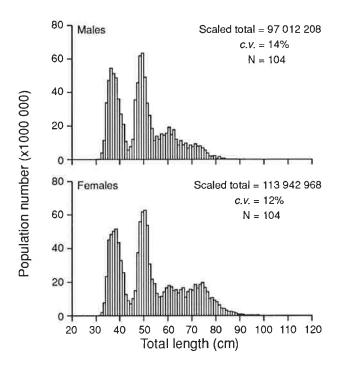
Biomass estimates by stratum (Appendix 3) show that many species were most abundant at 400-600 m. A few species (e.g., jack mackerels, spiny dogfish, giant stargazer) were associated with shallow strata and others (e.g., black oreo, spiky oreo, shovelnosed dogfish, Baxter's dogfish) with deep strata. These species were not well targeted by the survey and the biomass estimates merely reflect their abundance on the margins of their depth distribution.

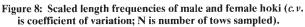
#### Size composition

The hoki population was dominated by juveniles (< 65 cm TL) with strong modal peaks at 35–39 and 47–52 cm (Figure 8). Hoki making up the younger mode were mostly distributed in shallow strata (200–400 m): those making up the older mode were mostly found in 400–600 m (Appendix 4). Adult hoki (> 65 cm TL) were common in the deepest strata (600–800 m), but they were also present in 400–600 m.

Small catches of hake throughout the survey area contributed to an uneven length frequency distribution (Figure 9): only two modes, at 56–63 and 78–88 cm, are visible. An examination of length frequency distribution by strata showed that younger hake (< 83 cm TL) occurred in most strata, but that older fish (up to 120 cm TL) were present only on the northern side of the Rise, particularly in depths of 600–800 m.

The length frequency distribution of silver warehou is dominated by peaks at 39 (females), 42 (males), and 46 cm (males and females) (Figure 10): the smaller fish were mostly distributed along the western and central Rise in 200–600 m, and the larger fish were found mostly to the east.


The ling length frequency distribution (Figure 11) shows peaks at 62–68 and 84–92 cm which were less evident in data from individual strata. Ling over 80 cm TL tended to occur on the northern side of the Rise, and in the deepest strata. Smaller ling were most common in central and eastern strata at 200–600 m.


The mean lengths of females of hoki, hake, ling, and silver warehou were greater than those of males, though the differences were statistically not significant (Table 7). The length-weight relationships for each sex were similar for each species.

#### **Stomach contents**

Over half of the hoki and ling stomachs examined were empty and nearly 40% were part full or full (Table 8). The most frequent dietary components were euphausiids and fish for hoki: fish and *Munida gregaria* for ling (Table 9). Nearly twothirds of the hake stomachs examined were empty and 31% were full or part full (*see* Table 8). Fish was the most frequent dietary component (*see* Table 9). Over two-thirds of the black oreo

Table 6: Estimated biomass (t) and coefficient of variation (c.v.) by sex of the main species Total Males (t) c.v. (%) (t) C.V. (%) 101 048 9.8 39 598 Hoki 9.8 Silver warehou 21 769 72.2 12 526 78.4 Black oreo 19 827 27.8 10 138 31.5 3 5 1 1 8 0 4 3 9.1 10.1 Ling 1 245 36.0 3 576 18.8 Hake





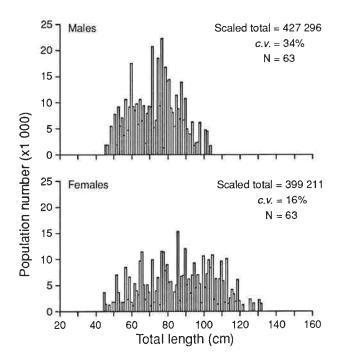
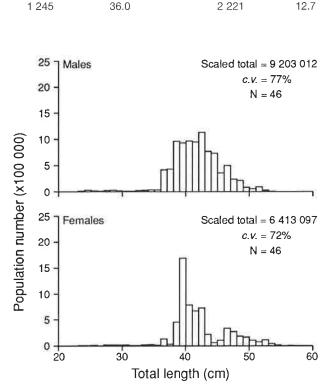




Figure 9: Scaled length frequencies of male and female hake (c.v. is coefficient of variation; N is number of tows sampled).



Females c.v. (%)

10.5

64.3

25.1

10.0

(t)

61 321

9 204

9 4 8 7

4 532

Figure 10: Scaled length frequencies of male and female silver warehou (*c.v.* is coefficient of variation; N is number of tows sampled).

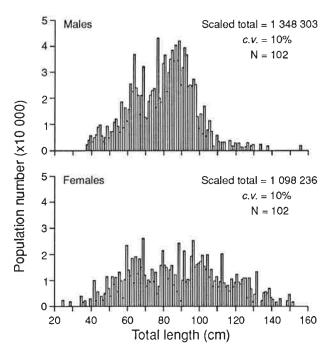



Figure 11: Scaled length frequencies of male and female ling (c.v. is coefficient of variation; N is number of tows sampled).

|  | Table 7: Length-weight | ght relationships (log-log | regression) for hoki, hake, | ling, and silver warehou by sex |
|--|------------------------|----------------------------|-----------------------------|---------------------------------|
|--|------------------------|----------------------------|-----------------------------|---------------------------------|

|                                                    |                       |                         | Le                      | ength (cm)                 |                         |                         | Weight (g)                            |                                                                                                    |                      |
|----------------------------------------------------|-----------------------|-------------------------|-------------------------|----------------------------|-------------------------|-------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|
|                                                    | No.                   | Mean                    | s.d.                    | Range                      | Mean                    | s.d.                    | Range                                 | Equation                                                                                           | $r^2$                |
| <b>Hoki</b><br>Males<br>Females<br>Total           | 374<br>1 038<br>1 412 | 68.61<br>75.34<br>73.56 | 12.47<br>10.56<br>11.49 | 34–101<br>32–109<br>32–109 | 1 085<br>1 360<br>1 287 | 520<br>519<br>533       | 120–3 420<br>95–4 190<br>95–4 190     | $W = 0.0036L^{2.96}$ $W = 0.0032L^{2.99}$ $W = 0.0034L^{2.97}$                                     | 0.94<br>0.94<br>0.94 |
| <b>Hake</b><br>Males<br>Females<br>Total           | 172<br>196<br>368     | 77 24<br>90.46<br>84 29 | 12.52<br>18.63<br>17.35 | 45–117<br>45–131<br>45–131 | 3 512<br>6 386<br>5 043 | 1 644<br>3 884<br>3 369 | 540-8 240<br>620-18 300<br>540-18 300 | $ \begin{split} W &= 0.0051 L^{3,07} \\ W &= 0.0045 L^{3,11} \\ W &= 0.0041 L^{3,13} \end{split} $ | 0.95<br>0.88<br>0.91 |
| <b>Ling</b><br>Males<br>Females<br>Total           | 612<br>512<br>1 124   | 80.68<br>90.11<br>84,97 | 17.00<br>25.57<br>21.84 | 37–137<br>28–151<br>28–151 | 2 796<br>4 460<br>3 554 | 1 886<br>3 737<br>2 996 | 190–16 500<br>80–19 200<br>80–19 200  | $W = 0.0016L^{3.24}$ $W = 0.0014L^{3.25}$ $W = 0.0015L^{3.25}$                                     | 0.98<br>0.98<br>0.98 |
| <b>Silver warehou</b><br>Males<br>Females<br>Total | 68<br>36<br>104       | 43,38<br>46.86<br>44.59 | 3.31<br>3.53<br>3.76    | 34–51<br>39–55<br>34–55    | 1 604<br>2 044<br>1 757 | 344<br>486<br>449       | 770–2 390<br>1 080–3 410<br>770–3 410 | $W = 0.0242L^{2.94}$ $W = 0.0137L^{3.09}$ $W = 0.0185L^{3.01}$                                     | 0.94<br>0.94<br>0.95 |

#### Table 8: Stomach state of the main species (*n* = sample size)

|                |     | Empty |     | Trace | Full or ( | oart full | E  | Everted | Total |
|----------------|-----|-------|-----|-------|-----------|-----------|----|---------|-------|
|                | n   | %     | п   | %     | n         | %         | n  | %       | n     |
| Hoki           | 736 | 52    | 117 | 8     | 548       | 39        | 11 | 1       | 1 412 |
| Ling           | 573 | 51    | 135 | 12    | 421       | 37        | 5  | < 1     | 1 134 |
| Hake           | 233 | 63    | 15  | 4     | 113       | 31        | 7  | 2       | 368   |
| Black oreo     | 42  | 35    | 1   | 0.8   | 35        | 29        | 42 | 35      | 120   |
| Silver warehou | 0   | 0     | 0   | 0     | 106       | 100       | 0  | 0       | 106   |

#### Table 9: Stomach contents of the main species sampled

|                          |     | Hoki |     | Ling |     | Hake | Blac | k oreo | Silver wa | arehou |
|--------------------------|-----|------|-----|------|-----|------|------|--------|-----------|--------|
| Prey                     | n*  | %†   | n   | %    | n   | %    | n    | %      | п         | %      |
| Euphausids               | 370 | 68   | 43  | 8    | 7   | 6    | 5    | 14     | 0         | 0      |
| Fish                     | 331 | 60   | 227 | 54   | 100 | 78   | 7    | 20     | 0         | 0      |
| Squid                    | 23  | 4    | 15  | 4    | 2   | 2    | 0    | 0      | 0         | 0      |
| Prawns                   | 13  | 2    | 51  | 12   | 2   | 2    | 3    | 9      | 0         | 0      |
| Munida                   | 0   | 0    | 230 | 55   | 0   | 0    | 0    | 0      | 0         | 0      |
| Unidentified crustaceans | 21  | 4    | 91  | 22   | 0   | 0    | 10   | 29     | 0         | 0      |
| Salps                    | 1   | < 1  | 0   | 0    | 0   | 0    | 18   | 51     | 106       | 100    |
| Other                    | 9   | 2    | 13  | 3    | 3   | 3    | 2    | 6      | 0         | 0      |
| Total                    | 768 |      | 670 |      | 114 |      | 45   |        | 106       |        |

\* n = Number of occurrences of prey in the stomachs examined.

† % = Percentage occurrence of prey species in part full and full stomachs.

stomachs were empty or everted and 30% were full or part full (*see* Table 8). Salps and unidentified crustacea were the most frequent dietary components (*see* Table 9). All of the 106 silver warehou whose stomachs were examined were full or part full of salps.

#### **Gonad condition**

Most hoki and ling were either juveniles (stage 1) or in the resting phase (stage 2) (Table 10): these two stages have been combined as they are difficult to distinguish visually. Some silver warehou and hake were running ripe (stage 5) suggesting that there was some spawning during the survey. No spawning schools were found.

# Table 10: Reproductive state of six commercial species examined

|                |        |     |     | Gona | id st | age* |       |
|----------------|--------|-----|-----|------|-------|------|-------|
|                | 1 or 2 | 3   | 4   | 5    | 6     | 7    | Total |
| Hoki           | 1 513  | 2   | 0   | 0    | 4     | 147  | 1 797 |
| Ling           | 446    | 180 | 146 | 3    | 3     | 1    | 880   |
| Hake           | 21     | 36  | 13  | 9    | 7     | 9    | 100   |
| Black oreo     | 120    | 0   | 0   | 0    | 0     | 0    | 0     |
| Silver warehou | 9      | 9   | 13  | 16   | 3     | 6    | 57    |
| Jack mackerel  | 0      | 0   | 3   | 0    | 0     | 0    | 3     |

\* Stage 1: immature, juvenile

Stage 2: resting adults

Stage 3: maturing gonads (eggs visible in ovaries; swollen gonads)

Stage 4: ripe (hyaline eggs present in ovaries; milt present in testes)

Stage 5: running ripe (eggs or milt released with a little pressure)

Stage 6: partially spent (partial release of eggs or milt has already occurred)

Stage 7: fully spent (gonads bloodshot, flaccid with few eggs or milt left)

All strata in the survey area were sampled and 107 stations were successfully completed. Biomass estimates of hoki, hake, and ling have coefficients of variation sufficiently low for use in stock assessment.

As in previous surveys of the area, hoki dominated the catch and formed about 45% of the total estimated biomass. This compares with 51% in July 1986 (Livingston *et al.* 1991) and 57% in March 1983 (Fenaughty & Uozumi 1989).

In 1989 the length frequency distribution of hoki showed a population dominated by juvenile fish, as in all previous surveys of the Chatham Rise (Kerstan & Sahrage 1980, Kuo & Tanaka 1984, Fenaughty & Uozumi 1989, Hatanaka *et al.* 1989b, Livingston *et al.* 1991). The number of modal peaks varies: in the present survey there were two strong peaks centred at 36 and 49 cm; in July 1986 there was a single peak at about 50 cm; and in March 1983 there were peaks at 42, 50, and 60 cm. Individual peaks correspond to individual year classes (Sullivan & Cordue 1994). Clearly, recruitment to the Chatham Rise can differ significantly from year to year. This is now being taken into account in hoki stock assessments (Sullivan & Cordue 1992, 1994).

A comparison of the relative proportions of adult (> 65 cm TL) and juvenile (< 65 cm TL) hoki on the Chatham Rise and in the Sub-Antarctic area shows that, as in 1983, 97-98% of the juvenile biomass in the two areas combined was on the Chatham Rise (Table 11). Juvenile hoki have been found only in small quantities on the west coast of the South Island and on the Challenger Plateau. The Chatham Rise is therefore assumed to be the main nursery ground for hoki, regardless of their spawning origin. The reasons for this distribution are not clear. The Chatham Rise has only 100 000 km<sup>2</sup> within the optimal depth range for juvenile hoki (200-600 m) compared with 185 000 km<sup>2</sup> in the Sub-Antarctic area. The Challenger Plateau (total area, 95 200 km<sup>2</sup>) is smaller than the Chatham Rise  $(133\ 000\ \text{km}^2)$  and there are very few hoki there. Contributing factors may be the length of time that hoki spend in the plankton before recruiting to the bottom, the dominant direction of currents from the main spawning grounds, and the availability of food. The 200–600 m depth ranges on the Challenger Plateau are largely north of the Subtropical Convergence Zone, and those in the Sub-Antarctic area are south of it. The Chatham Rise, however, is almost always traversed by the Subtropical Convergence which may provide increased productivity of, and optimal food availability for, for young hoki.

Between-survey comparisons of biomass estimates and catch rates to assess changes in population size ideally require that each survey covered the same area and used the same vessel and trawl gear at the same time of year. In most deepwater areas that have been surveyed for research purposes in New Zealand, the depth range or size of area sampled, the vessel, and the gear have differed on each occasion. Although the area sampled can usually be standardised between surveys by extrapolation or reduction, there has been little success in standardising for vessel or gear differences. The biomass estimates (see Table 11) and the catch rates (Tables 12–15) may therefore reflect differences both in vessels and gear (i.e., fishing power and gear efficiency) as well as any real differences in biomass.

Despite these difficulties, we considered it important to identify gross differences between surveys in biomass estimates and length distribution of the main species. Length distribution and relative catch rates within a survey provide some indication of changed distribution between surveys. We compared the biomass and relative proportions of hoki, hake, ling, and pale ghost shark between the Chatham Rise and the Sub-Antarctic area in 1983 and in 1989.

The biomass estimates of these species were much lower in the 1989 survey than in a similar survey in March 1983 (see Table 11). Hurst & Schofield (1990) argued that it was unlikely that these and other species had all suffered a decline in population size as many form a minor part of the catch on commercial vessels.

The relative proportions of hoki (total) in the Sub-Antarctic area and on the Chatham Rise were almost the same in 1989 as in 1983 (see Table 11)

Table 11: Biomass estimates (t) and percentages (in parentheses) of hoki, hake, ling, and pale ghost shark in the Sub-Antarctic area and on the Chatham Rise, 1989 and 1983

|                  |               |              | 1989    |               |              | 1983    |
|------------------|---------------|--------------|---------|---------------|--------------|---------|
|                  | Oct-Nov       | Nov-Dec      |         | Oct-Nov       | Mar          |         |
|                  | Sub-Antarctic | Chatham Rise | Total   | Sub-Antarctic | Chatham Rise | Total   |
| Hoki (total)     | 62 081 (38)   | 101 048 (62) | 163 129 | 213 738 (39)  | 335 045 (61) | 548 783 |
| Hoki (> 65 cm)   | 60 553 (58)   | 43 855 (42)  | 104 408 | 208 437 (66)  | 106 377 (34) | 314 814 |
| Hoki (< 65 cm)   | 1 528 (3)     | 57 193 (97)  | 58 721  | 5 301 (2)     | 324 408 (98) | 329 709 |
| Hake             | 2 660 (43)    | 3 576 (57)   | 6 238   | 10 333 (52)   | 9 606 (48)   | 19 939  |
| Ling             | 20 016 (71)   | 8 043 (29)   | 28 059  | 30 048 (70)   | 12 741 (30)  | 42 789  |
| Pale ghost shark | 17 629 (61)   | 11 415 (39)  | 29 044  | 21 238 (52)   | 19 552 (48)  | 40 790  |

(Data sources: present survey; Livingston & Schofield (1993); MAF Fisheries unpublished voyage reports from 1983.)

and the proportions of juvenile hoki (< 65 cm TL) were similar. Only the adult hoki (> 65 cm TL) biomass was different: it dropped from 66% in 1983 to 58% in 1989 in the Sub-Antarctic area, and increased from 34 to 42% on the Chatham Rise. This may reflect the high exploitation of Sub-Antarctic adult sized hoki during the spawning season on the west coast of the South Island (Sullivan & Cordue 1992).

The relative proportions of hake increased from 48% in 1983 to 57% in 1989 on the Chatham Rise and declined from 52 to 43% in the Sub-Antarctic area (*see* Table 11). Apart from the high coefficients of variation, there is no obvious reason for this, particularly as the relative proportions of hake in 1990 and 1991 were closer to those of 1983 than of 1989 (Colman & Vignaux 1992).

The relative proportions of ling showed no change in either area between 1983 and 1989 and those of pale ghost shark decreased on the Chatham Rise.

Catch rates of economically important species (hoki, hake, ling, and silver warehou) from 1983, 1986, and 1989 were compared to determine differences in fish density between surveys across the Chatham Rise. Catch rates of hoki were highest in the central part of the Chatham Rise in November-December 1989, November-December 1983, and March 1993, whereas in July 1986 catch rates, though high over the whole survey area, were highest on the western rise at depths of 400-600 m (Table 12). The relative density distribution of hoki between surveys supports the seasonal distribution found by Kerstan & Sahrhage (1980), who suggested that hoki are more widely dispersed in summer than in autumn when they accumulate at the western end, possibly before migrating to spawn.

Catch rates of hake were generally higher on the central and eastern parts of the Chatham Rise, particularly in depths of 600–800 m (Table 13).

# Table 12: Hoki catch rates (kg.km<sup>-2</sup>) to nearest kilogram on random trawl surveys of the Chatham Rise (data source: research database, MAF Fisheries Greta Point)

| Depth (m)                                     | 1983<br>(Mar)           | 1983<br>(Nov-Dec)       | 1986<br>(Jul)           | 1989<br>(Nov-Dec)     |
|-----------------------------------------------|-------------------------|-------------------------|-------------------------|-----------------------|
| Western Rise                                  | 4.047                   | •                       | 0.004                   | 540                   |
| 200-400                                       | 1 817                   | ns*                     | 2 094                   | 543                   |
| 400-600                                       | 6 463                   | ns                      | 8 215                   | 928                   |
| 600-800                                       | 5 041                   | ns                      | 1 750                   | 236                   |
| Central Rise<br>200–400<br>400–600<br>600–800 | 2 293<br>4 342<br>7 935 | 1 250<br>2 200<br>1 892 | 1 274<br>3 260<br>2 122 | 896<br>1 138<br>1 010 |
| Eastern Rise                                  |                         |                         |                         |                       |
| 200-400                                       | 1 171                   | 887                     | 1 367                   | 707                   |
| 400-600                                       | 1 569                   | 831                     | 873                     | 661                   |
| 600-800                                       | 1 341                   | 441                     | 316                     | 137                   |

\* ns = not surveyed.

Table 13: Hake catch rates (kg.km<sup>-2</sup>) to nearest kilogram on random trawl surveys of the Chatham Rise (data source: research database, MAF Fisheries Greta Point)

| Depth (m)               | 1983<br>(Mar) | 1983<br>(Nov-Dec) | 1986<br>(Jul) | 1989<br>(Nov-Dec) |
|-------------------------|---------------|-------------------|---------------|-------------------|
| Western Rise<br>200–400 | 6             | ns*               | 2             | 1                 |
| 400-600                 | 107           | ns                | 56            | 21                |
| 600-800                 | 93            | ns                | 107           | 8                 |
| Central Rise            |               |                   |               |                   |
| 200-400                 | 9             | 88                | 197           | 5                 |
| 400–600                 | 137           | 95                | 81            | 38                |
| 600-800                 | 220           | 148               | 177           | 81                |
| Eastern Rise            |               |                   |               |                   |
| 200-400                 | 20            | 27                | 199           | 11                |
| 400-600                 | 92            | 98                | 37            | 37                |
| 600-800                 | 56            | 61                | 104           | 24                |
| * no - not ourseved     |               |                   |               |                   |

\* ns = not surveyed.

# Table 14: Ling catch rates (kg.km<sup>-2</sup>) to nearest kilogram on random trawl surveys of the Chatham Rise (data source: research database, MAF Fisheries Greta Point)

|                           | ,     |           |       | ,         |
|---------------------------|-------|-----------|-------|-----------|
|                           | 1983  | 1983      | 1986  | 1989      |
| Depth (m)                 | (Mar) | (Nov-Dec) | (Jul) | (Nov-Dec) |
| Western Rise              |       |           |       |           |
| 200-400                   | 9     | ns*       | 186   | 31        |
| 400-600                   | 82    | ns        | 198   | 99        |
| 600-800                   | 80    | ns        | 108   | 53        |
| Central Rise              |       |           |       |           |
| 200-400                   | 97    | 164       | 168   | 38        |
| 400-600                   | 118   | 109       | 187   | 64        |
| 600-800                   | 106   | 88        | 116   | 107       |
|                           |       |           |       |           |
| Eastern Rise              |       |           |       |           |
| 200-400                   | 250   | 118       | 100   | 52        |
| 400-600                   | 88    | 129       | 128   | 60        |
| 600-800                   | 53    | 196       | 45    | 41        |
| * ma in a transmission of |       |           |       |           |

\* ns = not surveyed.

Table 15: Silver warehou catch rates (kg.km<sup>-2</sup>) to nearest kilogram on random trawl surveys of the Chatham Rise (data source: research database, MAF Fisheries Greta Point)

| Depth (m)                                            | 1983<br>(Mar)    | 1983<br>(Nov-Dec) | 1986<br>(Jul)   | 1989<br>(Nov-Dec) |
|------------------------------------------------------|------------------|-------------------|-----------------|-------------------|
| Western Rise<br>200–400<br>400–600<br>600–800        | 627<br>36<br>< 1 | ns*<br>ns<br>ns   | 79<br>415<br>5  | 16<br>23<br>< 1   |
| Central Rise<br>200–400<br>400–600<br>600–800        | 58<br>23<br>< 1  | 503<br>50<br>16   | 197<br>275<br>8 | 23<br>680<br>< 1  |
| East Rise, Chathams<br>200–400<br>400–600<br>600–800 | 41<br>53<br>< 1  | 130<br>72<br>19   | 66<br>79<br>1   | 258<br>27<br>< 1  |

\* ns = not surveyed.

Seasonal trends in distribution have not been evident in the past (Kerstan & Sahrhage 1980), though hake aggregate near the Chatham Islands to spawn in December (Hurst & Bagley 1987) and possibly in winter as well (Livingston *et al.* 1991).

Catch rates of ling varied less than those of other species throughout the Chatham Rise area in most surveys (Table 14). Again, this confirms seasonal observations by Kerstan & Sahrhage (1980).

Silver warehou catches have always been patchy, but the larger catches were usually taken from the central or western part of the Chatham Rise (Table 15). Seasonal trends are difficult to discern. Kerstan & Sahrhage (1980) found that silver warehou were scarce during winter months.

In conclusion, the 1989 survey provided information on relative size structure, recruitment strength, and distribution of fish species (in particular, hoki, hake, and ling) at depths of 200–800 m on the Chatham Rise. Though biomass estimate comparisons with earlier surveys are limited as we are unable to estimate vessel fishing power, a standard series may enable estimation of the relative fishing power of these vessels at a later date.

## **Acknowledgments**

We thank skipper Rick Tregidga and the crew of *Amaltal Explorer* for their cooperation during the survey and Peter Talley and Ken Atkinson for organisation on shore. Thanks also to A. Colman as voyage leader and to C. Thomas, K. Sullivan, K. Mulligan, S. Iball, and C. Gabriel who participated in the voyage. Thanks to M. Francis and M. Clark for refereeing the report.

## References

- Colman, J. A. & Vignaux, M. 1992: Assessment of hake (*Merluccius australis*) for the 1992–93 fishing year. N.Z. Fisheries Assessment Research Document 92/17. 23 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Cordue, P. L. 1991: Hoki acoustic biomass indices for the west coast South Island 1988, 1989, and 1990. N.Z. Fisheries Assessment Research Document 91/11. 31 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Fenaughty, J. M. & Uozumi, Y. 1989: A survey of demersal fish stocks on the Chatham Rise, New Zealand, March 1983. N.Z. Fisheries Technical Report No. 12. 42 p.
- Francis, R. I. C. C. 1981: Stratified random trawl surveys of deepwater demersal fish stocks around New Zealand. Fisheries Research Division Occasional Publication No. 32. 28 p.
- Francis, R. I. C. C. 1984: An adaptive strategy for stratified random trawl surveys. N.Z. Journal of Marine and Freshwater Research 18: 59–71.
- Hatanaka, H., Uozumi, Y., Fukui, J., Aizawa, M., & Hurst, R. J. 1989a: Japan-New Zealand trawl survey off southern New Zealand, October-November 1983. N.Z. Fisheries Technical Report No. 9. 52 p.
- Hatanaka, H., Uozumi, Y., Fukui, J., Aizawa, M., & Livingston, M. E. 1989b: Trawl survey of hoki and other slope fish on the Chatham Rise, New Zealand, November-December 1983. *N.Z. Fisheries Technical Report No. 17*, 31 p.
- Hurst, R. J. & Bagley, N. W. 1987: Results of a trawl survey of barracouta and associated finfish near the Chatham Islands, New Zealand, December 1984. N.Z. Fisheries Technical Report No. 3. 44 p.
- Hurst, R. J., Livingston, M. E., Coombs, R., & Patchell, G. J., 1988: Hoki. *In* Baird, G. G. & McKoy, J. L. (Comps & Eds.). Papers from the workshop to review fish stock assessments for the 1987-88 New Zealand fishing year, pp. 129-141. (Unpublished report held in MAF Fisheries Greta Point library, Wellington.)
- Hurst, R. J. & Schofield, K. A. 1990: Preliminary biomass estimates of hoki and selected species from trawl surveys of Southland/Sub-Antarctic and the Chatham Rise, Oct-Dec 1989, and comparison with previous *Shinkai Maru* surveys. N.Z. Fisheries Assessment Research Document 90/6. 23 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Hurst, R. J. & Schofield, K. A. 1991: Preliminary biomass estimates of hoki and other main species from trawl surveys of Southland/Sub-Antarctic, Jul-Aug and Nov-Dec 1990. N.Z. Fisheries Assessment Research Document 91/15. 25 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)

- Kerstan, M. & Sahrhage, D. 1980: Biological investigations on fish stocks in waters off New Zealand. Mitteilungen aus dem Institut für Seefischerei der Bundesforschungsanstalt für Fischerei, Hamburg, No. 29. 187 p.
- Kuo, C. & Tanaka, S. 1984: Otolith features and reliability for age determination of hoki *Macruronus novaezelandiae* (Hector) in waters around New Zealand. *Bulletin of the Japanese Society of Scientific Fisheries 50*: 1349–1355.
- Livingston, M. E. 1990: Spawning hoki (Macruronus novaezelandiae Hector) concentrations in Cook Strait and off the east coast of the South Island, New Zealand, August-September 1987. N.Z. Journal of Marine and Freshwater Research 24: 503-517.
- Livingston, M. E. & Schofield, K. A. 1993: Trawl survey of hoki and associated species south of New Zealand, October-November 1989. N.Z. Fisheries Technical Report No. 36. 39 p.
- Livingston, M. E., Schofield, K. A., & Sullivan, K. J. 1992: The discrimination of hoki (*Macruronus novaezelandiae*) groups in New Zealand waters using morphometrics and age-growth parameters. N.Z. Fisheries Assessment Research Document 92/18. 29 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Livingston, M. E., Uozumi, Y., & Berben, P. H. 1991: Abundance, distribution, and spawning condition of hoki and other mid-slope fish on the Chatham Rise, July 1986. *N.Z. Fisheries Technical Report No.* 25. 47 p.
- Patchell, G. J. 1982: The New Zealand hoki fisheries 1972–82. *Fisheries Research Division Occasional Publication No. 38.* 23 p.
- Sullivan, K. J. 1991: A review of the 1989–90 hoki fishery and a preliminary assessment of hoki stocks for 1991. N.Z. Fisheries Assessment Research Document 91/13. 34 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Sullivan, K. J. & Cordue, P. L. 1992: Stock assessment of hoki for the 1992–93 fishing year. N.Z. Fisheries Assessment Research Document 92/12. 43 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Sullivan, K. J. & Cordue, P. L. 1994: A review of the 1991–92 hoki fishery and assessment of hoki stocks for 1993. N.Z. Fisheries Assessment Research Document 94/2. 42 p. (Draft report held in MAF Fisheries Greta Point library, Wellington.)
- Vignaux, M. 1992: Catch per unit of effort (CPUE) analysis of the hoki fishery. N.Z. Fisheries Assessment Research Document 92/14, 31 p<sub>+</sub> (Draft report held in MAF Fisheries Greta Point library, Wellington.)

# Appendix 1: Station data

|                  |          |                        |                        | Start of tow             |            | oth (m)    | Headline    | Doorspread     |
|------------------|----------|------------------------|------------------------|--------------------------|------------|------------|-------------|----------------|
| Station          | Stratum  | Date                   | Latitude               | Longitude                | Min.       | Max.       | height (m)  | (m)            |
| 1                | 17       | 26 Nov 89              | 44°35.5′S              | 173°06.7′E               | 485        | 505        | 11.0        | 130.0          |
| 2                | 06       | 26 Nov 89              | 44°34.5′S              | 173°43.9′E               | 750        | 781        | 10.3        | 126.0          |
| 3                | 06       | 26 Nov 89              | 44°25.8´S              | 173°38.0′E               | 695        | 710        | 8.4         | 136.0          |
| 4                | 17       | 26 Nov 89              | 44°09.2′S              | 173°48.0′E               | 490        | 500        | 10,0        | 130.0          |
| 5                | 06<br>17 | 26 Nov 89              | 44°14.5′S              | 174°11.2′E               | 612        | 624        | 10.0        | 126.0          |
| 6<br>7           | 17       | 27 Nov 89<br>27 Nov 89 | 44°04.5′S<br>43°58.3′S | 174°12.6′E<br>174°17.3′E | 543<br>543 | 560<br>544 | 10.0        | 129.0          |
| 8                | 17       | 27 Nov 89              | 43°55.9′S              | 174°26.7′E               | 543        | 544<br>566 | 9.0<br>8.5  | 130.0<br>129.0 |
| 9                | 16       | 27 Nov 89              | 43°07.2′S              | 174°59.1′E               | 504        | 510        | 8.3         | 131.6          |
| 10               | 06       | 27 Nov 89              | 44°34.8′S              | 174°56.7′E               | 756        | 794        | 8.0         | 130.0          |
| 11               | 06       | 28 Nov 89              | 44°26.0′S              | 175°29.7′E               | 699        | 701        | 11.3        | 126.9          |
| 12               | 06       | 28 Nov 89              | 44°16.7′S              | 175°29.4′E               | 608        | 616        | 9.0         | 132.0          |
| 13               | 16       | 28 Nov 89              | 44°04.2′S              | 175°24.8′E               | 508        | 512        | 9.9         | 128.0          |
| 14               | 16       | 28 Nov 89              | 44°02.4′S              | 175°37.5′E               | 530        | 536        | 10.0        | 132.0          |
| 15               | 16       | 28 Nov 89              | 44°10.0′S              | 175°54.3´E               | 499        | 518        | 11.0        | 135.0          |
| 16               | 24       | 29 Nov 89              | 44°03.2′S              | 175°57.5 E               | 314        | 335        | 9.5         | 122.0          |
| 17               | 24       | 29 Nov 89              | 44°04.9′S              | 176°06.4′E               | 390        | 397        | 10.0        | 118.9          |
| 18               | 24       | 29 Nov 89              | 44°05.8′S              | 176°04.1′E               | 210        | 254        | 12.0        | 125.4          |
| 19               | 15       | 29 Nov 89              | 44°08.1′S              | 176°26.5′E               | 569        | 572        | 10.3        | 144.8          |
| 20               | 05       | 29 Nov 89              | 44°14.8′S              | 176°22.0′E               | 607        | 654        | 11.4        | 130.3          |
| 21               | 05       | 29 Nov 89              | 44°11.5′S              | 176°33.3′E               | 640        | 646        | 11.1        | 134.0          |
| 22<br>23         | 15       | 30 Nov 89<br>30 Nov 89 | 43°55.6′S              | 177°01.1′E               | 531        | 555        | 9.4         | 135.4          |
| 23<br>24         | 15<br>20 | 30 Nov 89              | 43°47.4′S<br>43°33.3′S | 177°04.4′E<br>177°43.6′E | 490<br>374 | 496<br>400 | 7.8         | 144.0          |
| 24               | 15       | 30 Nov 89              | 43°38.4′S              | 177°46.3′E               | 446        | 400        | 10.0<br>9.6 | 133.0<br>133.0 |
| 26               | 05       | 30 Nov 89              | 43°53.1′S              | 177°44.9′E               | 628        | 408<br>654 | 10.0        | 140_0          |
| 27               | 05       | 01 Dec 89              | 43°53.7′S              | 178°08.0′E               | 598        | 610        | 7.9         | 136.0          |
| 28               | 14       | 01 Dec 89              | 43°51.1′S              | 178°28.2′E               | 497        | 506        | 8.7         | 139.0          |
| 29               | 20       | 01 Dec 89              | 43°32.9′S              | 178°31.4′E               | 348        | 351        | 8.9         | 128.8          |
| 30               | 20       | 01 Dec 89              | 43°31.1′S              | 178°41.2′E               | 333        | 352        | 9.8         | 131,2          |
| 31               | 14       | 01 Dec 89              | 43°46.0′S              | 178°49.2 E               | 448        | 448        | 8.9         | 130.0          |
| 32               | 14       | 01 Dec 89              | 43°36.0′S              | 179°03.1′E               | 405        | 408        | 9.0         | 135.0          |
| 33               | 14       | 02 Dec 89              | 43°38.5′S              | 179°15.7′E               | 445        | 453        | 8.3         | 132,5          |
| 34               | 14       | 02 Dec 89              | 43°37.8′S              | 179°25.8′E               | 423        | 452        | 9.8         | 131.9          |
| 35*              | 21       | 02 Dec 89              | 43°41.0′S              | 179°51.3′W               | 366        | 381        | 9.0         | 134.0          |
| 36               | 21       | 02 Dec 89              | 43°43.2′S              | 179°45.8W                | 357        | 360        | 8.0         | 132.0          |
| 37*              | 21       | 02 Dec 89              | 43°38.5′S              | 179°25.5 W               | 385        | 390        | 9.0         | 133.3          |
| 38<br>39*        | 21<br>10 | 02 Dec 89              | 43°36.0′S<br>43°36.5′S | 179°28.2 W               | 386        | 388        | 9.0         | 130.5          |
| 39<br>40         | 10       | 03 Dec 89<br>03 Dec 89 | 43 36.5 S<br>43°29.8′S | 179°15.6 W<br>179°05.9 W | 404<br>455 | 410<br>463 | 10.5<br>9.1 | 130.0          |
| 40<br>4 <b>1</b> | 10       | 03 Dec 89              | 43°33.7′S              | 178°56.1 W               | 455        | 463        | 8.6         | 133.4<br>135.3 |
| 42               | 13       | 03 Dec 89              | 43°45.1′S              | 178°02.2′W               | 405        | 406        | 12.2        | 130.1          |
| 43               | 13       | 03 Dec 89              | 44°06.6′S              | 178°48.0 W               | 450        | 457        | 11.0        | 135.0          |
| 44               | 13       | 04 Dec 89              | 43°57.7′S              | 178°36.4W                | 455        | 459        | 9.3         | 134.3          |
| 45               | 13       | 04 Dec 89              | 44°00.4′S              | 178°31.5W                | 446        | 449        | 8.6         | 135.6          |
| 46               | 13       | 04 Dec 89              | 44°05.2′S              | 178°19.5 W               | 460        | 480        | 9.3         | 121.0          |
| 47               | 04       | 04 Dec 89              | 44°20.3´S              | 178°19,9′W               | 721        | 742        | 9.5         | 132.0          |
| 48               | 12       | 04 Dec 89              | 44°10.1′S              | 177°57.7W                | 500        | 502        | 10.1        | 130.0          |
| 49               | 12       | 04 Dec 89              | 44°06.6′S              | 177°49.5′W               | 476        | 488        | 8.0         | 131,6          |
| 50               | 04       | 05 Dec 89              | 44°26.8′S              | 177°39.3W                | 735        | 749        | 9.5         | 131.3          |
| 51               | 04       | 05 Dec 89              | 44°20.9′S              | 177°44.9W                | 610        | 618        | 10.0        | 132.6          |
| 52               | 12       | 05 Dec 89              | 44°17.6′S              | 177°34.5 W               | 517        | 527        | 8.6         | 130.0          |
| 53               | 12       | 05 Dec 89              | 44°12.3′S              | 177°28.8′W               | 464        | 477        | 8.9         | 127.8          |
| 54<br>55         | 12<br>12 | 06 Dec 89<br>06 Dec 89 | 44°04.6′S<br>43°46.5′S | 175°28.7 W<br>175°30,3 W | 426<br>413 | 448<br>420 | 9.8<br>12.3 | 125.9          |
| 56               | 12       | 06 Dec 89              | 43°33.8′S              | 175°02.0W                | 616        | 622        | 9.4         | 124.0<br>130.0 |
| 57               | 04       | 06 Dec 89              | 43°16.2´S              | 175°28.9′W               | 674        | 676        | 10.4        | 137.8          |
| 58               | 11       | 06 Dec 89              | 43°20.1′S              | 175°38.6 W               | 561        | 582        | 10.0        | 138.5          |
| 59               | 23       | 07 Dec 89              | 43°42.9′S              | 175°52.2 W               | 228        | 230        | 10.0        | 116.3          |
| 60               | 11       | 07 Dec 89              | 43°22.0′S              | 176°01.9W                | 413        | 448        | 8,5         | 131.8          |
| 61               | 11       | 07 Dec 89              | 43°14.9′S              | 176°00.3 W               | 518        | 540        | 8.5         | 130.0          |
| 62               | 11       | 07 Dec 89              | 43°09.0′S              | 176°04.2 W               | 567        | 584        | 8.0         | 134.0          |
| 63               | 23       | 07 Dec 89              | 43°16.3′S              | 176°27.8 W               | 362        | 380        | 10.0        | 130.1          |
| 64               | 03       | 07 Dec 89              | 42°54.8′S              | 176°30.4W                | 764        | 773        | 8.0         | 135.0          |
| 65               | 03       | 08 Dec 89              | 42°57.1′S              | 176°37.2W                | 673        | 694        | 9.4         | 131.8          |
| 66               | 03       | 08 Dec 89              | 42°59.2′S              | 176°41.1W                | 610        | 617        | 8.5         | 132.4          |
| 67               | 23       | 08 Dec 89              | 43°11.6′S              | 176°53.1′W               | 320        | 356        | 7.0         | 137.0          |
| 68               | 23       | 08 Dec 89              | 43°18.2′S              | 177°07.1′W               | 282        | 288        | 10.0        | 133.7          |
| 69<br>70         | 11       | 08 Dec 89              | 43°09.3′S              | 177°38.3W                | 411        | 435        | 9.0         | 131.0          |
| 70<br>71         | 03<br>22 | 08 Dec 89<br>09 Dec 89 | 42°53.1′S<br>43°30.3′S | 177°52.6 W<br>177°40.5 W | 618<br>362 | 653<br>365 | 8.5<br>10.0 | 136.9<br>122.4 |
| 72               | 22       | 09 Dec 89              | 43°36.9′S              | 177°38.2°W               | 362        | 365        | 8.0         | 122.4          |
|                  | 44       | 00 000 00              | 10 00.00               |                          | 011        | 000        | 0.0         | 100.0          |

# Appendix 1 – continued

|         |         |           |           | Start of tow |      | pth (m) | Headline   | Doorspread |
|---------|---------|-----------|-----------|--------------|------|---------|------------|------------|
| Station | Stratum | Date      | Latitude  | Longitude    | Min. | Max.    | height (m) | (m)        |
| 73      | 22      | 09 Dec 89 | 43°42.1′S | 177°55.8′W   | 360  | 384     | 9.6        | 134.9      |
| 74      | 13      | 09 Dec 89 | 43°47.1′S | 178°17.5 W   | 400  | 419     | 10.0       | 127.4      |
| 76      | 11      | 09 Dec 89 | 43°12.2′S | 178°03.8W    | 449  | 480     | 9.5        | 133.0      |
| 78*     | 10      | 10 Dec 89 | 43°21.1′S | 178°40.6′W   | 418  | 423     | 9.0        | 134.5      |
| 79      | 10      | 10 Dec 89 | 43°22.7′S | 178°53.6W    | 425  | 438     | 8.5        | 134.0      |
| 80      | 10      | 10 Dec 89 | 43°05.9′S | 179°21.8′W   | 532  | 538     | 10.0       | 139.0      |
| 81      | 03      | 10 Dec 89 | 42°53.3´S | 179°20.6 W   | 632  | 675     | 10.7       | 145.0      |
| 82      | 03      | 11 Dec 89 | 42°57.2′S | 179°46.0´W   | 607  | 624     | 8.0        | 144.8      |
| 83      | 10      | 11 Dec 89 | 43°13.2′S | 179°51.4′W   | 509  | 510     | 9.0        | 139.8      |
| 84      | 10      | 11 Dec 89 | 43°20.4´S | 179°57.3 W   | 438  | 446     | 8.0        | 141.1      |
| 85      | 09      | 11 Dec 89 | 43°18.6′S | 179°55.7′E   | 452  | 466     | 9.0        | 133.7      |
| 86      | 09      | 11 Dec 89 | 43°15.4′S | 179°40.9´E   | 470  | 481     | 9.0        | 138.1      |
| 87      | 02      | 11 Dec 89 | 42°58.2′S | 179°07.5′E   | 624  | 628     | 10.0       | 139.0      |
| 88      | 09      | 12 Dec 89 | 43°04.3´S | 179°02.4′E   | 423  | 439     | 9.0        | 134.0      |
| 89      | 20      | 12 Dec 89 | 43°17.5′S | 178°24.6′E   | 370  | 380     | 10.7       | 131.5      |
| 90      | 20      | 12 Dec 89 | 43°19.3′S | 178°13.0′E   | 320  | 325     | 10.0       | 125.0      |
| 91      | 20      | 12 Dec 89 | 43°18.1′S | 177°55.1′E   | 296  | 300     | 11.9       | 124.4      |
| 92*     | 20      | 12 Dec 89 | 43°13.5′S | 177°45.1´E   | 305  | 310     | 10.1       | 122.2      |
| 93      | 20      | 12 Dec 89 | 43°07.7′S | 177°43.1′E   | 315  | 318     | 10.0       | 123.3      |
| 94      | 09      | 13 Dec 89 | 42°50.9′S | 178°05.2′E   | 532  | 540     | 9.5        | 133.4′     |
| 95      | 08      | 13 Dec 89 | 42°55.0′S | 177°26.0'E   | 400  | 408     | 9.3        | 125.9      |
| 96      | 02      | 13 Dec 89 | 42°46.0′S | 177°01.0'E   | 642  | 660     | 9.8        | 130.6      |
| 97      | 02      | 13 Dec 89 | 42°45.8´S | 176°49.9'E   | 636  | 658     | 9.5        | 139.1      |
| 98      | 08      | 13 Dec 89 | 42°54.8′S | 176°30.2′E   | 475  | 480     | 10.5       | 132.5      |
| 99      | 19      | 13 Dec 89 | 43°03.8′S | 176°32.5′E   | 370  | 390     | 10.0       | 130.1      |
| 100     | 19      | 14 Dec 89 | 43°08.1′S | 176°38.6′E   | 322  | 330     | 10.0       | 127.3      |
| 101     | 19      | 14 Dec 89 | 43°06.9′S | 176°46.3′E   | 320  | 337     | 9.2        | 127.1      |
| 102     | 19      | 14 Dec 89 | 43°24.3′S | 176°50.1 Έ   | 250  | 260     | 9.1        | 129.0      |
| 103     | 19      | 14 Dec 89 | 43°33.0′S | 176°33.0′E   | 347  | 397     | 9.9        | 130.0      |
| 104     | 15      | 14 Dec 89 | 43°44.8′S | 176°17.9′E   | 418  | 425     | 8.5        | 135.0      |
| 105     | 18      | 14 Dec 89 | 43°46.1´S | 175°41.9′E   | 374  | 398     | 11.4       | 130.0      |
| 106     | 18      | 15 Dec 89 | 43°39.6′S | 175°41.4′E   | 288  | 304     | 10.0       | 131.2      |
| 107*    | 18      | 15 Dec 89 | 43°34.6´S | 175°49.3′E   | 282  | 289     | 10.0       | 132.9      |
| 108*    | 19      | 15 Dec 89 | 43°26.1´S | 176°10.3'E   | 384  | 384     | 10.0       | 128.8      |
| 109*    | 19      | 15 Dec 89 | 43°24.8′S | 176°04.4′E   | 371  | 376     | 11,0       | 132.3      |
| 110     | 08      | 16 Dec 89 | 43°04.5´S | 176°08.8′E   | 440  | 466     | 10.0       | 128.4      |
| 111     | 07      | 16 Dec 89 | 43°04.7′S | 175°52.3´E   | 460  | 480     | 9.5        | 129.4      |
| 112*    | 01      | 16 Dec 89 | 42°57.5′S | 174°56.1′E   | 648  | 680     | 9.5        | 130.0      |
| 113     | 01      | 16 Dec 89 | 42°56.4′S | 174°47.6′E   | 733  | 742     | 9.5        | 127.2      |
| 114     | 01      | 16 Dec 89 | 43°01.2′S | 174°42.7´E   | 616  | 637     | 10.0       | 129.6      |
| 115     | 18      | 17 Dec 89 | 43°28.3'S | 174°51.1′E   | 325  | 340     | 9.5        | 127,9      |
| 116     | 07      | 17 Dec 89 | 43°27.1′S | 174°17.3′E   | 566  | 575     | 8.3        | 139.4      |
| 117     | 07      | 17 Dec 89 | 43°27.6′S | 173°59.7′E   | 428  | 459     | 10.5       | 130.0      |
| 118     | 07      | 17 Dec 89 | 43°13.5′S | 174°13.7′E   | 596  | 598     | 8.0        | 131.4      |
|         |         |           |           |              |      |         |            |            |

\*Stations with unsatisfactory gear performance and not included in analyses in this report.

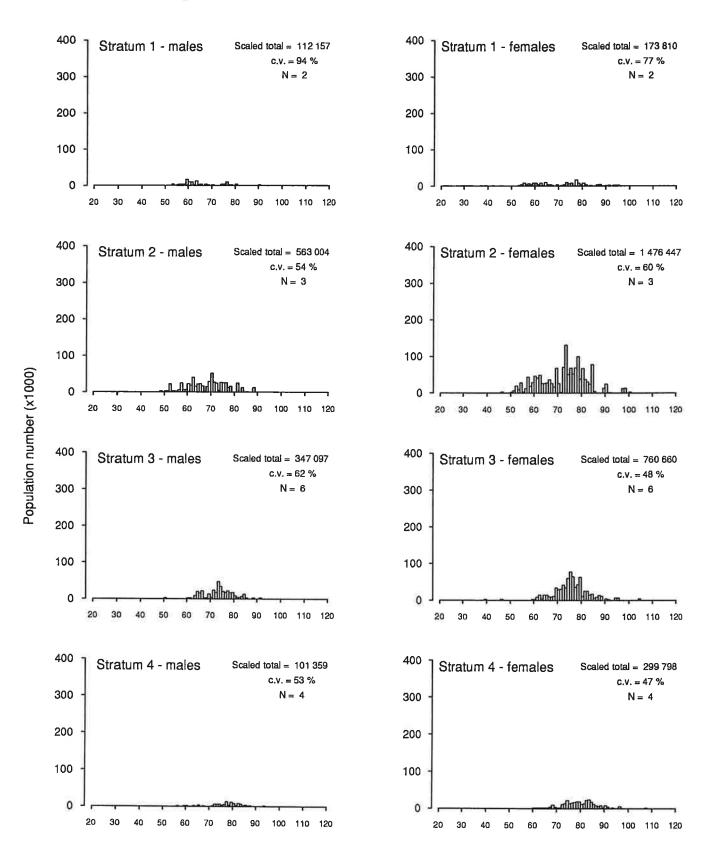
# Appendix 2: Species taken during the survey

| The second se | 9                                            |                 |                                                               |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|---------------------------------------------------------------|
| Scientific name                                                                                                 | Common name                                  | Species<br>code | Strata in<br>which present                                    |
| Elasmobranchii                                                                                                  |                                              |                 |                                                               |
| Chlamydoselachidae                                                                                              | frill shark                                  | FRS             | 2                                                             |
| <i>Chlamydoselachus anguineus</i><br>Scyliorhinidae                                                             | IIIII SHAFK                                  | TK5             | 2                                                             |
| Apristurus macrorhyncus                                                                                         | deepwater catshark                           | APR             | 6                                                             |
| <i>Cephaloscyllium isabella</i><br>Carcharhinidae                                                               | carpet shark                                 | CAR             | 7, 2, 3                                                       |
| Galeorhinus galeus                                                                                              | school shark                                 | SCH             | 5, 6, 12, 13, 15, 18–20, 23, 24                               |
| Squalidae                                                                                                       |                                              | 64.0            | 0.10.17                                                       |
| Centrophorus squamosus<br>Centroscymnus crepidater                                                              | deepwater spiny dogfish<br>deepwater dogfish | CSQ<br>CYP      | 3, 10, 16<br>1–4, 6, 7, 11, 13                                |
| C. plunketi                                                                                                     | Plunket's shark                              | PLS             | 1-8                                                           |
| C. owstonii                                                                                                     | Owston's spiny dogfish                       | CYO             | 1-3, 6, 17                                                    |
| Dalatias licha<br>Deania calcea                                                                                 | black shark<br>shovelnosed spiny dogfish     | BSH<br>SND      | 1–4, 6–12, 17, 23<br>1–12, 14–17, 19, 22, 23                  |
| Etmopterus baxteri                                                                                              | Baxter's dogfish                             | ETB             | 3-6, 12, 14-17, 20                                            |
| E. lucifer                                                                                                      | Lucifer dogfish                              | ETL<br>PDG      | 1–17, 20, 21, 23<br>2–4, 6–11, 13–15, 17, 19, 22–24           |
| Oxynotus bruniensis<br>Squalus acanthias                                                                        | prickly dogfish<br>spotted spiny dogfish     | SPD             | 5, 7–24                                                       |
| Torpedinidae                                                                                                    |                                              |                 |                                                               |
| Torpedo fairchildi                                                                                              | electric ray                                 | ERA             | 2                                                             |
| Narkidae<br>Typhlonarke aysoni                                                                                  | blind electric ray                           | BER             | 2, 8, 22                                                      |
| Rajidae                                                                                                         | 2                                            |                 |                                                               |
| Bathyraja sp.                                                                                                   | bluntnosed skate<br>deepsea skate            | BTH<br>BTA      | 3–5, 10–14, 16, 17, 20, 23<br>1, 2, 5–7, 9, 12, 14, 15, 17–19 |
| Pavoraja asperula<br>P. spinifera                                                                               | prickly deepsea skate                        | BTS             | 2, 19                                                         |
| Raja innominata                                                                                                 | smooth skate                                 | SSK             | 2-5, 7, 8, 10-14, 17-20, 22, 23                               |
| Chimaeridae                                                                                                     | dark ghost shark                             | GSH             | 8, 18–20                                                      |
| Hydrolagus novaezelandiae<br>Hydrolagus sp.                                                                     | pale ghost shark                             | GSP             | 1-17, 20-24                                                   |
| Hydrolagus sp.                                                                                                  | purplefinned ghost shark                     | НҮР             | 5, 13                                                         |
| Rhinochimaeridae<br>Harriotta raleighana                                                                        | longnosed chimaera                           | LCH             | 1-17, 20, 23, 24                                              |
| Turriota racignana                                                                                              | longhosed enniaera                           |                 | 1 11, 20, 20, 2                                               |
| Teleostei                                                                                                       |                                              |                 |                                                               |
| Notacanthidae<br>Notacanthus sexspinis                                                                          | spineback                                    | SBK             | 1-17, 22, 23                                                  |
| Synaphobranchidae                                                                                               |                                              |                 | <i>,</i>                                                      |
| Diastobranchus capensis                                                                                         | basketwork eel                               | BEE             | 6                                                             |
| Congridae<br>Bassanago bulbiceps                                                                                | swollenheaded conger                         | SCO             | 2, 3, 5–8, 10, 12, 14, 15, 20, 21                             |
| B_hirsutus                                                                                                      | hairy conger                                 | НСО             | 1-6, 8-18, 20-22                                              |
| Gonorynchidae<br>Gonorynchus gonorynchus                                                                        | sandfish                                     | GON             | 1, 12                                                         |
| Argentinidae                                                                                                    | Sullarish                                    |                 |                                                               |
| Argentina elongata                                                                                              | silverside                                   | SSI             | 4, 6–24                                                       |
| Alepocephalidae<br>Xenodermichthys sp.                                                                          | black slickhead                              | BSL             | 3                                                             |
| Photichthyidae                                                                                                  |                                              |                 |                                                               |
| Species not identified                                                                                          | lighthousefish                               | РНО             | 3, 12                                                         |
| Malacosteidae<br>Species not identified                                                                         | loosejaw                                     | MAL             | 7                                                             |
| Paralepididae                                                                                                   |                                              | DOL             | 12                                                            |
| <i>Magnisudis prionosa</i><br>Myctophidae                                                                       | barracudina                                  | BCA             | 13                                                            |
| Species not identified                                                                                          | lanternfish                                  | LAN             | 4, 10, 19                                                     |
| Moridae                                                                                                         | - · · · ·                                    |                 | 1.2                                                           |
| Halargyreus johnsonii<br>Lepidion microcephalus                                                                 | Johnson's cod<br>smallheaded cod             | HJO<br>SMC      | 1-3<br>1, 4, 6, 12, 23                                        |
| Mora moro                                                                                                       | ribaldo                                      | RIB             | 1–17                                                          |
| Pseudophycis bachus                                                                                             | red cod                                      | RCO<br>GRC      | 3, 5, 11, 12, 18–24<br>8, 9                                   |
| <i>Tripterophycis gilchristi</i><br>Euclichthyidae                                                              | grenadier cod                                | UKC             | 0, 9                                                          |
| Euclichthys polynemus                                                                                           | eucla cod                                    | EUC             | 6, 12, 17                                                     |
| Gadidae                                                                                                         | southern blue whiting                        | SBW             | 24                                                            |
| <i>Micromesistius australis</i><br>Merlucciidae                                                                 | southern blue whiting                        | 11 11           | 2.                                                            |
| Macruronus novaezelandiae                                                                                       | hoki                                         | HOK             | 1-24                                                          |
| Merluccius australis                                                                                            | hake                                         | НАК             | 1–23                                                          |

## Appendix 2 – *continued*

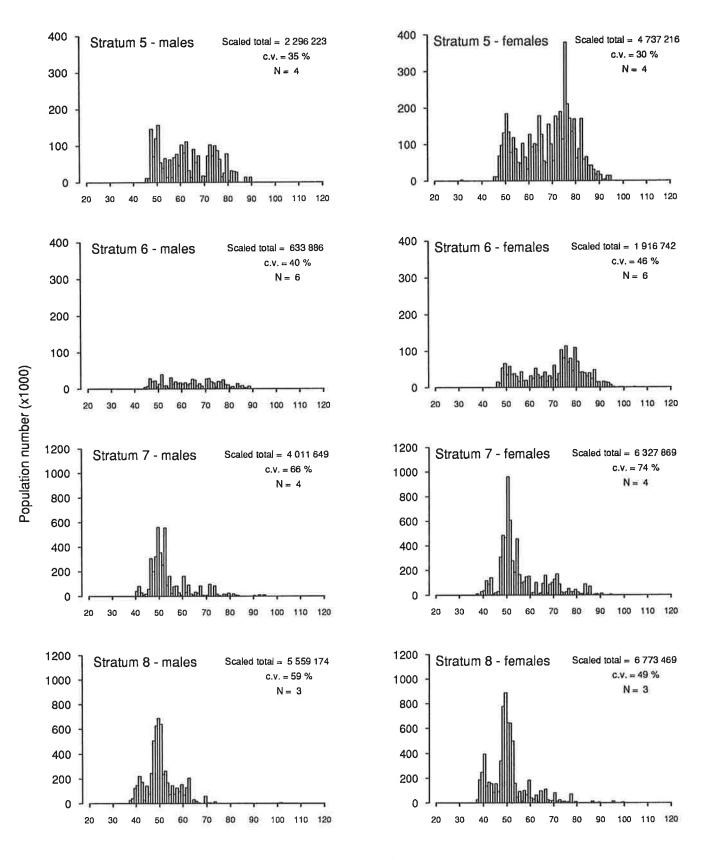
|                                                    |                                          | Species    | Strata in                            |
|----------------------------------------------------|------------------------------------------|------------|--------------------------------------|
| Scientific name                                    | Common name                              | code       | which present                        |
| Macrouridae<br>Caelorinchus aspercephalus          | obliquebanded rattail<br>bigeyed rattail | CAS<br>CBO | 6, 7, 9–24<br>1–24                   |
| C. bollonsi<br>C. fasciatus                        | banded rattail                           | CFA        | 1-24<br>1-7, 9-12, 14-17, 19, 20, 23 |
| C. innotabilis                                     | notable rattail                          | CIN        | 1, 4, 6, 11                          |
| C. kaiyomaru                                       | Kaiyomaru rattail                        | CKA        | 1                                    |
| C. matamua                                         | Mahia rattail                            | CMA        | 1-4, 9, 12                           |
| C. oliverianus                                     | Oliver's rattail                         | COL        | 2-7, 11-18                           |
| Coryphaenoides murrayi                             | abyssal rattail                          | CMU        | 4, 6, 7                              |
| C. serrulatus                                      | serrulate rattail                        | CSE        | 1–3, 11, 19                          |
| C. subserrulatus                                   | fourrayed rattail                        | CSU        | 3                                    |
| Lepidorhynchus denticulatus<br>Macrourus carinatus | javelinfish<br>ridgescaled rattail       | JAV<br>MCA | 1–23<br>4, 6                         |
| Trachyrincus sp.                                   | unicorn rattail                          | WHX        | 1, 3–6                               |
| Ventrifossa nigromaculata                          | blackspotted rattail                     | VNI        | 3-6, 9, 11, 13, 14                   |
| Ophidiidae                                         | 1                                        |            |                                      |
| Genypterus blacodes                                | ling                                     | LIN        | 1–24                                 |
| Carapidae                                          |                                          | 200        |                                      |
| <i>Echiodon cryomargarites</i><br>Ceratiidae       | messmate fish                            | ECR        | 3                                    |
| Cryptopsarus couesi                                | seadevil                                 | SDE        | 21                                   |
| Trachipteridae                                     | seducin                                  | SDL        | 21                                   |
| Trachipterus trachypterus                          | dealfish                                 | DEA        | 2                                    |
| Trachichthyidae                                    |                                          |            |                                      |
| Hoplostethus mediterraneus                         | silver roughy                            | SRH        | 1-3, 7, 8, 11, 12, 20, 23            |
| Paratrachichthys trailli                           | common roughy                            | RHY        | 18, 22                               |
| Zeidae<br>Capromimus abbreviatus                   | anna danu                                | CDÓ        | 20                                   |
| Cyttus novaezelandiae                              | capro dory<br>silver dory                | CDO<br>SDO | 20<br>3, 11, 18, 22, 23              |
| C, traversi                                        | lookdown dory                            | LDO        | 1-24                                 |
| Oreosomatidae                                      |                                          |            |                                      |
| Allocyttus niger                                   | black oreo                               | BOE        | 3-6, 12. 14-17                       |
| A. verrucosus                                      | warty oreo                               | WOE        | 6                                    |
| Neocyttus rhomboidalis                             | spiky oreo                               | SOR        | 1-4, 7-9, 11, 12, 23                 |
| <i>Pseudocyttus maculatus</i><br>Macrorhamphosidae | smooth oreo                              | SSO        | 1-4, 6, 16                           |
| Centriscops obliquus                               | redbanded bellowsfish                    | BBE        | 1-15.17-24                           |
| Scorpaenidae                                       |                                          | 000        |                                      |
| Helicolenus percoides                              | sea perch                                | SPE        | 1–24                                 |
| Congiopodidae                                      |                                          | 210        | 5 40 00                              |
| Congiopodus leucopaecilus                          | southern pigfish                         | PIG        | 5, 18, 20                            |
| Triglidae<br>Chelidonichthys kumu                  | red gurnard                              | GUR        | 11, 18, 19                           |
| Hoplichthyidae                                     | ied guinard                              | UUK        | 11, 10, 17                           |
| Hoplichthys haswelli                               | deepsea flathead                         | FHD        | 2-7, 9-21, 23                        |
| Psychrolutidae                                     |                                          |            |                                      |
| Psychrolutes sp.                                   | blobfish                                 | PSY        | 6                                    |
| Unidentified toadfish<br>Percichthyidae            | toadfish                                 | TOA        | 1, 3, 10, 12–20, 22, 24              |
| Polyprion americanus                               | bass groper                              | BAS        | 11, 18, 23                           |
| P. oxygeneios                                      | hapuku                                   | HAP        | 14, 22                               |
| Serranidae                                         |                                          |            | ,                                    |
| Lepidoperca sp. A                                  | orange perch                             | OPE        | 18–20                                |
| Apogonidae                                         |                                          |            |                                      |
| Ēpigonus lenimen                                   | bigeyed cardinalfish                     | EPL        | 3, 4, 20                             |
| E. robustus<br>E. telescopus                       | cardinalfish<br>deepsea cardinalfish     | EPR<br>EPT | 1-3, 10-12, 23<br>1, 3, 7-9, 12      |
| Carangidae                                         | deepsea cardinallish                     | EFI        | 1, 5, 7-9, 12                        |
| Trachurus murphyi                                  | slender mackerel                         | JMM        | 3, 5, 7, 10, 11, 13, 20, 22, 23      |
| Bramidae                                           |                                          |            |                                      |
| Brama brama                                        | Ray's bream                              | RBM        | 1, 4, 7–9, 12, 14, 15, 17–22         |
| Emmelichthyidae                                    | 11 1                                     | DDT        | 0.10.04                              |
| Emmelichthys nitidus<br>Plagiogeneion rubiginosus  | redbait                                  | RBT        | 8, 18–24                             |
| Cheilodactylidae                                   | rubyfish                                 | RBY        | 3, 23                                |
| Nemadactylus macropterus                           | tarakihi                                 | TAR        | 19, 23                               |
| Uranoscopidae                                      |                                          |            |                                      |
| Kathetostoma giganteum                             | giant stargazer                          | STA        | 2-4.7-24                             |
| Pinguipedidae                                      | uallanı aa d                             | NCO        | 10                                   |
| Parapercis gilliesi                                | yellow cod                               | YCO        | 19                                   |
|                                                    |                                          |            |                                      |

# Appendix 2 – *continued*

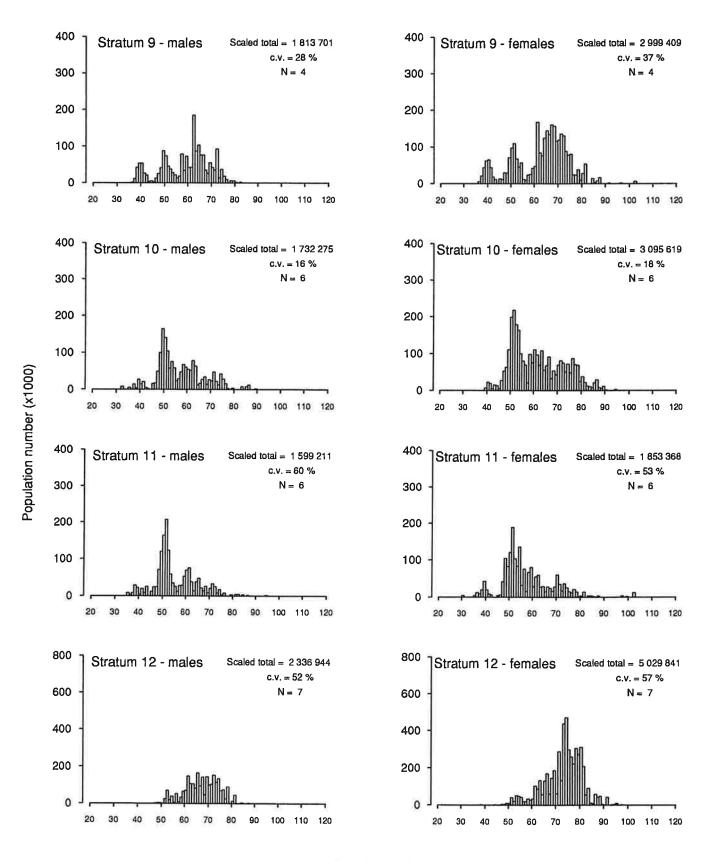

|                                            |                        | Species | Strata in                         |
|--------------------------------------------|------------------------|---------|-----------------------------------|
| Scientific name                            | Common name            | code    | which present                     |
| Gempylidae                                 |                        |         |                                   |
| Rexea solandri                             | gemfish                | SKI     | 19,23                             |
| Thyrsites atun                             | barracouta             | BAR     | 7, 11, 18, 19, 22, 23             |
| Trichluridae                               | e                      | FRO     | 10.02                             |
| Lepidopus caudatus                         | frostfish              | FRO     | 12, 23                            |
| Centrolophidae                             | and develop            | RUD     | 1, 3, 5–7, 9–13, 15, 17, 20, 22   |
| Centrolophus niger                         | rudderfish<br>bluenose | BNS     | 1, 5, 5–7, 9–15, 15, 17, 20, 22   |
| Hyperoglyphe antarctica                    | ragfish                | RAG     | 4, 6                              |
| Icichthys australis<br>Seriolella caerulea | white warehou          | WWA     | 1, 3, 6–24                        |
| S. punctata                                | silver warehou         | SWA     | 3, 5–8, 10–24                     |
| Tetragonuridae                             | silver watenou         | O TTI K | 5,5 6,16 51                       |
| Tetragonurus cuvieri                       | squaretail             | TET     | 15                                |
| Bothidae                                   | · 1                    |         |                                   |
| Arnoglossus scapha                         | witch                  | WIT     | 16, 18–23                         |
| Neoachiropsetta milfordi                   | finless flounder       | MAN     | 4                                 |
| Pleuronectidae                             |                        |         |                                   |
| Pelotretis flavilatus                      | lemon sole             | LSO     | 3,21-23                           |
| Combala and a                              |                        |         |                                   |
| <b>Cephalopoda</b><br>Amphitretidae        |                        |         |                                   |
| Unidentified                               | deepwater octopus      | DWO     | 1, 2, 5, 6, 15–17                 |
| Ommastrephidae                             | deep water oetop aa    |         | 1, 2, 0, 0, 10 1,                 |
| Unidentified                               | arrow squid            | SQU     | 5, 14, 15, 17, 20, 21, 24         |
| Ommastrephes bartrami                      | red squid              | RŠQ     | 2, 3, 6, 8, 9, 11, 12, 17, 20, 23 |
| Onychoteuthidae                            | 1                      | -       |                                   |
| Unidentified                               | warty squid            | WSQ     | 1-6, 9, 11, 12, 14-20, 22-24      |
|                                            |                        |         |                                   |

# Appendix 3: Biomass estimates (t) and coefficients of variation (%, in parentheses) for the main ITQ and bycatch species by stratum, grouped by depth. Species codes are given in Appendix 2.

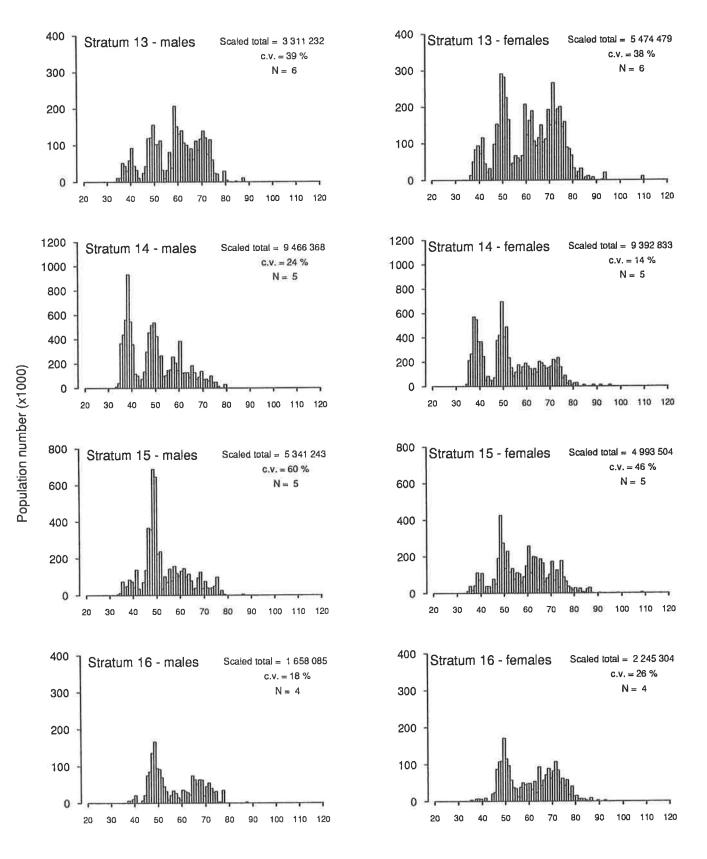
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |        |        |        |             |       |       |         |         | Spec  | ies code |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------|--------|--------|-------------|-------|-------|---------|---------|-------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stratum   | HOK     | SWA    | BOE    | GSP    | LIN         | JAV   | SOR   | LDO     | HAK     | WWA   | STA      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200–400 m |         |        |        |        |             |       |       |         |         |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18        |         |        | 0      | 0      |             |       | 0     |         |         |       |          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19        |         |        | 0      | 0      | (51)<br>327 |       | 0     |         |         |       |          |
| 20         10         903         116         0         928         332         10         0         248         24         521         329           21         2392         52         0         247         143         13         0         112         14         253         294           22         2995         1495         0         310         329         70         0         259         32         732         499           23         2223         1981         0         230         80         275         327         36         79         133         306           24         2206         703         0         494         50         0         8         0         25         75           Subtotal         28307         4 696         0         2 219         1404         428         327         885         205         1821         1 504           400-600 m         7         5 12         117         0         688         523         399         8         94         256         34         23           6(61)         (77)         2         17         364         172         443                                                                                  | 15        |         |        | 0      | 0      |             |       | 0     |         |         |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20        | 10 903  |        | 0      |        | 332         |       | 0     | 248     | 24      | 521   | 329      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21        | (36)    |        | 0      |        |             |       | 0     | (28)    |         | (42)  |          |
| 22         2         995         1 495         0         310         329         70         0         259         32         732         49           23         2 223         1 981         0         230         80         275         327         36         79         133         306           24         2 206         703         0         494         50         0         0         8         0         25         75           Subtotal         28 307         4 696         0         2 209         1 404         428         327         885         205         1 821         1 504           400-600 m         77         6 (13)         (73)         (32)         (34)         (41)         (100)         (25)         (96)         (49)         (62)           8         5 107         2         0         17         364         172         43         61         (20)         61         (73)         (41)         (71)         (16)         (11)         (100)         100         3361         188         0         409         522         255         0         331         835         34         19           10                                                                  | 21        | (21)    |        | 0      |        |             |       | 0     |         |         |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22        | 2 995   | 1 495  | 0      | 310    | 329         | 70    | 0     | 259     | 32      | 732   | 49       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00        |         |        | 0      |        |             |       | 007   |         |         |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23        |         |        | 0      |        |             |       |       |         |         |       |          |
| Subtotal $28 307$ $4 696$ $0$ $2 209$ $1 404$ $428$ $327$ $885$ $205$ $1 821$ $1 504$ 400-600 m </td <td>24</td> <td>2 206</td> <td>703</td> <td>0</td> <td>494</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>75</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24        | 2 206   | 703    | 0      | 494    |             |       |       |         |         |       | 75       |
| 400-600 m           7         5512         117         0         688         523         399         8         94         256         34         23           8         5107         2         0         17         364         172         43         61         209         5         1           9         3 610         0         0         255         250         296         82         2215         346         28         19           10         3 611         0         0         0         255         296         82         2215         346         28         19           11         1995         76         0         132         486         296         2047         280         230         237         106           11         1995         76         0         132         486         296         2047         280         230         237         106           13         6 292         293         58         570         541         1051         733         417         107         112         149           14         8 761         98         2         905                                                                                                                | 0         |         |        | 0      |        |             | 100   | 007   |         | 005     |       |          |
| 7       5 512       117       0       688       523       399       8       94       256       34       23         8       5 107       2       0       17       364       172       43       61       209       5       1         445       (100)       (27)       (37)       (41)       (71)       (16)       (11)       (100)       (100)         9       3 610       0       0       258       250       296       82       2215       346       28       19         (47)       (19)       (24)       (40)       (58)       (22)       (20)       (13)       (60)       (60)         11       1995       76       0       132       486       296       2 047       280       230       237       106         12       8170       293       58       570       545       1051       733       417       107       112       149         13       6 292       289       0       571       283       147       0       434       111       19       46         14       8 781       98       2       905       382       994                                                                                                                                                                                  | Subtotal  | 28 307  | 4 696  | U      | 2 209  | 1 404       | 428   | 327   | 885     | 205     | 1 821 | 1 504    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |        |        |        |             |       |       |         |         |       |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7         |         |        | 0      |        |             |       |       |         |         |       |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8         |         |        | 0      | 17     |             |       |       |         |         |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | (45)    | (100)  |        | (27)   | (37)        | (41)  | (71)  | (16)    | (11)    | (100) | (100)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         |         | 0      | 0      |        |             |       |       |         |         |       |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10        |         | 168    | 0      |        |             |       |       |         |         |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | (19)    | (48)   |        | (44)   | (41)        | (19)  |       | (13)    | (67)    | (63)  | (100)    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11        |         |        | 0      |        |             |       |       |         |         |       |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12        |         |        | 58     |        |             |       |       |         |         |       |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12        |         |        |        |        |             |       |       |         |         |       |          |
| 14       8 781       98       2       905       382       994       0       619       97       118       9         (12)       (37)       (100)       (35)       (28)       (51)       (23)       (75)       (65)       (81)         15       5824       15844       50       1076       262       252       0       210       103       697       300         (48)       (98)       (100)       (15)       (29)       (29)       (21)       (32)       (96)       (47)         16       2 623       50       20       460       407       168       0       113       23       14       51         (32)       (97)       (90)       (21)       (27)       (22)       (16)       (95)       (62)       (64)         17       7 582       52       39       1 019       717       449       0       145       42       14       35         Subtotal       58 857       17 029       169       6 105       4 748       4 459       2 913       2 919       2 359       1 312       488         600-80 m       (11)       (21)       (76)       (29)       (100) <td>13</td> <td>6 292</td> <td>289</td> <td></td> <td></td> <td>283</td> <td>147</td> <td></td> <td>434</td> <td>111</td> <td>19</td> <td>46</td> | 13        | 6 292   | 289    |        |        | 283         | 147   |       | 434     | 111     | 19    | 46       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/        |         |        | 2      |        |             | (27)  | 0     | (22)    | (45)    |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14        |         |        |        |        |             |       | 0     |         |         |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15        | 5 824   | 15 884 | 50     | 1 076  | 262         | 252   | 0     | 210     | 103     | 697   | 30       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16        |         |        |        |        |             |       | 0     | (21)    | (32)    |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10        |         |        |        |        |             |       | 0     |         |         |       |          |
| Subtotal       58 857       17 029       169       6 105       4 748       4 459       2 913       2 919       2 359       1 312       488         600-800 m       1       286       0       0       395       168       33       512       8       14       45       0         2       2 289       0       0       167       289       559       300       72       398       0       36         6(67)       (24)       (43)       (7)       (25)       (50)       (18)       (15)         3       1 411       7       34       193       310       723       1 558       166       389       128       43         (49)       (100)       (100)       (25)       (43)       (19)       (54)       (18)       (44)       (72)       (77)         4       590       0       1 706       238       238       270       135       36       21       0       133         4(6)       (57)       (33)       (52)       (37)       (100)       (42)       (87)       (100)         5       6 622       8       2 819       934       606       543       0 <td>17</td> <td>7 582</td> <td>52</td> <td>39</td> <td>1 019</td> <td>717</td> <td>449</td> <td>0</td> <td></td> <td>42</td> <td></td> <td>35</td>         | 17        | 7 582   | 52     | 39     | 1 019  | 717         | 449   | 0     |         | 42      |       | 35       |
| 600-800 m       1       286       0       0       395       168       33       512       8       14       45       0         2       2 289       0       0       167       289       559       300       72       398       0       36         3       1 411       7       34       193       310       723       1558       166       389       128       43         (49)       (100)       (100)       (25)       (43)       (19)       (54)       (18)       (44)       (72)       (77)         4       590       0       1 706       238       238       270       135       36       21       0       13         4       590       0       1 706       238       238       270       135       36       21       0       13         4       590       0       1 706       238       238       270       135       36       21       0       13         5       6 622       8       2 819       934       606       543       0       162       94       0       0         6       2 689       2       15 101                                                                                                                                                                                              | Subtotal  |         |        |        |        |             |       | 0.010 |         | (75)    |       |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Subiolai  | 30 037  | 17 029 | 109    | 0 103  | 4 / 40      | 4 4 9 | 2913  | 2 9 1 9 | 2 3 3 9 | 1312  | 400      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600–800 m | 000     | 0      |        | 0.05   | 100         |       | 510   |         |         | . –   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |         | 0      | 0      |        |             |       |       |         |         |       | 0        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2         |         | 0      | 0      |        |             |       |       | . ,     |         |       | 36       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _         |         | _      |        |        |             |       |       |         | (18)    |       |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3         |         |        |        |        |             |       |       | 166     |         |       |          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         |         | , ,    |        |        |             |       |       |         |         |       |          |
| (31)       (84)       (53)       (14)       (58)       (10)       (39)       (66)         6       2 689       2       15 101       1 174       279       570       0       77       83       6       0         (39)       (100)       (34)       (37)       (57)       (27)       (47)       (63)       (63)         Subtotal       13 887       17       19 660       3 101       1 890       2 698       2 505       521       999       179       92         Total       101 048       21 769       19 827       11 415       8 043       7 585       5 746       4 323       3 576       3 266       2 083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | (46)    | -      | (57)   | (33)   | (52)        | (37)  | (100) | (42)    | (87)    |       | (100)    |
| 6       2 689       2 15 101       1 174       279       570       0       77       83       6       0         (39)       (100)       (34)       (37)       (57)       (27)       (47)       (63)       (63)         Subtotal       13 887       17       19 660       3 101       1 890       2 698       2 505       521       999       179       92         Total       101 048       21 769       19 827       11 415       8 043       7 585       5 746       4 323       3 576       3 266       2 083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5         |         |        |        |        |             |       | 0     | 162     |         | 0     | 0        |
| (39)         (100)         (34)         (37)         (57)         (27)         (47)         (63)         (63)           Subtotal         13 887         17         19 660         3 101         1 890         2 698         2 505         521         999         179         92           Total         101 048         21 769         19 827         11 415         8 043         7 585         5 746         4 323         3 576         3 266         2 083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6         | 2 689   |        |        |        |             |       | 0     |         |         | 6     | 0        |
| Subtotal         13 887         17         19 660         3 101         1 890         2 698         2 505         521         999         179         92           Total         101 048         21 769         19 827         11 415         8 043         7 585         5 746         4 323         3 576         3 266         2 083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | (39)    | (100)  | (34)   | (37)   | (57)        | (27)  |       | (47)    | (63)    |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Subtotal  | 13 887  | 17     | 19 660 | 3 101  | 1 890       |       | 2 505 |         |         |       | 92       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total     | 101 048 | 21 769 | 19 827 | 11 415 | 8 043       | 7 585 | 5 746 | 4 323   | 3 576   | 3 266 | 2 083    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |        |        |        |             |       |       |         |         |       |          |


# **Appendix 3** – *continued*

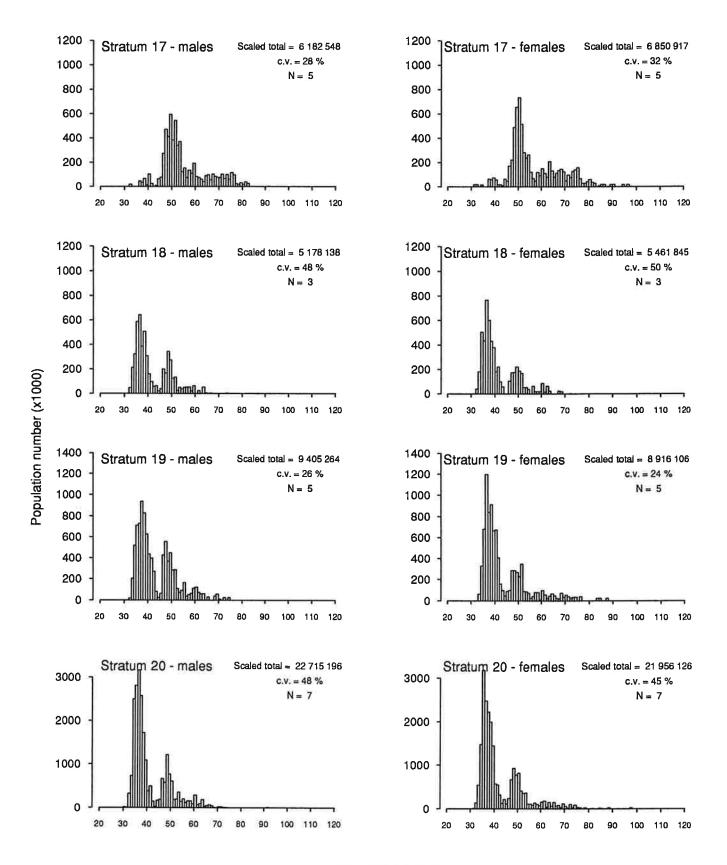
|                  |       |              |               |               |               |               |               | Speci         | ies code    |                 |
|------------------|-------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|-----------------|
| Stratum          | RAT   | SND          | JMM           | SPE           | BYX           | SPD           | RIB           | ETB           | SSO         | All Species     |
| 200–400 m        |       |              |               |               |               |               |               |               |             |                 |
| 18               | 49    | 0            | 0             | 21            | 47            | 448           | 0             | 0             | 0           | 3 909           |
| 19               | 276   | 0            | 0             | 127           | 2             | 448           | 0             | 0             | 0           | 8 326           |
| 20               | 559   | 0            | 0             | 208           | 8             | 147           | 0             | 0             | 0           | 14 778          |
| 21               | 99    | 0            | 0             | 11            | 5             | 115           | 0             | 0             | 0           | 3 827           |
| 22               | 6     | 8            | 1             | 15            | 18            | 101           | 0             | 0             | 0           | 7 070           |
| 23               | 71    | 91           | 3 504         | 31            | 10            | 57            | 0             | 0             | 0           | 10 029          |
| 24               | 21    | 0            | 0             | 1             | 0             | 1             | 0             | 0             | 0           | 3 611           |
| Subtotal         | 1 081 | 99           | 3 505         | 414           | 90            | 1 123         | 0             | 0             | 0           | 51 550          |
| <b>400–600</b> m |       |              |               |               |               |               |               |               |             |                 |
| 7                | 442   | 494          | 6             | 84            | 15            | 18            | 70            | 0             | 0           | 9 023           |
| 8                | 172   | 34           | 0             | 72            | 8             | 41            | 17            | 0             | 0           | 6 487           |
| 9                | 161   | 11           | 0             | 81            | 90            | 6             | 6             | 0             | 0           | 5 646           |
| 10               | 271   | 42           | 11            | 54            | 11            | 45            | 12            | 0             | 0           | 6 715           |
| 11               | 167   | 109          | 170           | 24            | 577           | 19            | 29            | 0             | 0           | 7 785           |
| 12               | 452   | 65           | 0             | 34            | 683           | 9             | 89            | 1             | 0           | 13 916          |
| 13               | 476   | 0            | 5             | 74            | 1             | 32            | 18            | 0             | 0           | 9 248           |
| 14               | 441   | 12           | 0             | 182           | 3             | 59            | 28            | 15            | 0           | 13 295          |
| 15               | 335   | 46           | 0             | 160           | 0             | 77            | 22            | 58            | 0           | 25 507          |
| 16               | 864   | 35           | 0             | 80            | 0             | 9             | 62            | 52            | 0           | 5 227           |
| 17               | 822   | 484          | 0             | 127           | 0             | 19            | 152           | 91            | 0           | 12 <b>19</b> 4  |
| Subtotal         | 4 603 | 1 332        | 192           | 982           | 1 388         | 334           | 505           | 217           | 0           | 115 043         |
| 600–800 m        |       |              |               |               |               |               |               |               |             |                 |
| 1                | 97    | 518          | 0             | 4             | 0             | 0             | 53            | 0             | 48          | 2 547           |
| 2                | 76    | 886          | 0             | 13            | 0             | 0             | 50            | 0             | 2           | 5 372           |
| 3                | 248   | 1 311        | 3             | 27            | 9             | 0             | 121           | 110           | 15          | 7 742           |
| 4                | 103   | 483          | 0             | 19            | 4             | 0             | 143           | 16            | 204         | 4 537           |
| 5                | 707   | 40           | Ø             | 103           | 0             | 0             | 111           | 257           | 0           | 13 992          |
| 6                | 946   | 114          | 4             | 28            | 0             | 0             | 277           | 499           | 183         | 22 750          |
| Subtotal         | 2 177 | 3 352        | 7             | 194           | 13            | 0             | 755           | 882           | 453         | 56 940          |
| Total            | 7 861 | 4 785<br>(9) | 3 703<br>(44) | 1 586<br>(11) | 1 490<br>(55) | 1 458<br>(19) | 1 259<br>(11) | 1 099<br>(28) | 453<br>(48) | 223 535<br>(10) |



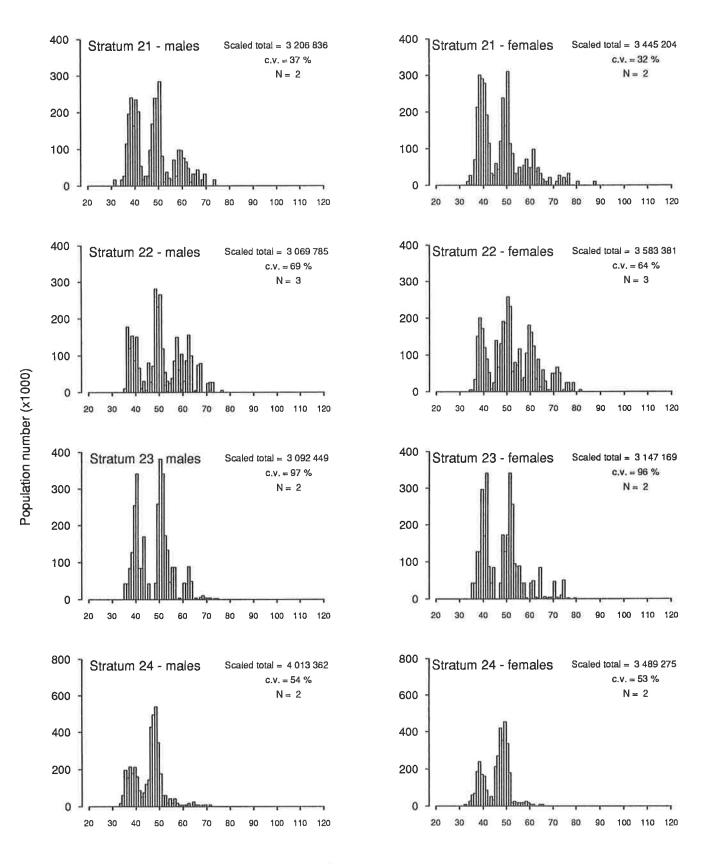

# Appendix 4: Scaled length frequencies of male and female hoki by stratum (N = number of tows sampled)


Total length (cm)




Total length (cm)




Total length (cm)







Total length (cm)



Total length (cm)

#### **NEW ZEALAND FISHERIES TECHNICAL REPORTS**

Prices do not include GST. New Zealand purchasers please add GST at the current rate,

- TR1. HICKMAN, R. W. 1987: Growth, settlement, and mortality in experimental farming of dredge oysters in New Zealand waters. 18 p. \$20.00
- TR2. UNWIN, M. J. et al. 1987: Coded-wire tagging of juvenile chinook salmon (Oncorhynchus tshawytscha) in New Zealand, 1977-86. 24 p. \$19.00
- TR3. HURST, R. J. & BAGLEY, N. W. 1987: Results of a trawl survey of barracouta and associated finfish near the Chatham Islands, New Zealand, December 1984. 44 p. \$25.00
- TR4. UOZUMI, Y. et al. 1987: Japan-New Zealand trawl survey off southern New Zealand, April 1983. 52 p. \$22.00
- TR5. HURST, R. J. 1988: The barracouta, Thyrsites atun, fishery around New Zealand: historical trends to 1984, 43 p. \$25.00
- TR6. BREEN, P. A. et al. 1988: Feasibility of a minimum size limit based on tail width for the New Zealand red rock lobster, Jasus edwardsii, 16 p. \$14,00
- TR7. FRANCIS, M. P. & SMITH, D. W. 1988: The New Zealand rig fishery: catch statistics and composition, 1974-85. 30 p. \$18.00
- TR8. MASSEY, B. R. 1989: The fishery for rig, Mustelus lenticulatus, in Pegasus Bay, New Zealand, 1982–83. 19 p. \$21,00
- TR9. HATANAKA, H. *et al.* 1989: Japan-New Zealand trawl survey off southern New Zealand, October-November 1983. 52 p. (O.P.) (\$16.00 photocopy)
- TR10. UNWIN, M. J. *et al.* 1989: Experimental releases of coded-wire tagged juvenile chinook salmon (*Oncorhynchus tshawytscha*) from the Glenariffe Salmon Research Station, 1982–83 to 1984–85. 22 p. \$22.00
- TR11. CLARK, M. R. & KING, K. J. 1989: Deepwater fish resources off the North Island, New Zealand: results of a trawl survey, May 1985 to June 1986. 56 p. \$28,00
- TR12. FENAUGHTY, J. M. & UOZUMI, Y. 1989: A survey of demersal fish stocks on the Chatham Rise, New Zealand, March 1983. 42 p. \$28,00
- TR13. BENSON, P. G. & SMITH, P. J. 1989: A manual of techniques for electrophoretic analysis of fish and shellfish tissues. 32 p. \$28.00
- TR14. ZELDIS, J. R. 1989: A fishery for *Munida gregaria* in New Zealand: ecological considerations. 11 p. \$16.00
- TR15. HORN, P. L. & MASSEY, B. R. 1989: Biology and abundance of alfonsino and bluenose off the lower east coast North Island, New Zealand. 32 p, \$30.00
- TR16. HORN, P. L. 1989: An evaluation of the technique of tagging alfonsino and bluenose with detachable hook tags. 15 p. \$16.00
- TR17. HATANAKA, H. et al. 1989: Trawl survey of hoki and other slope fish on the Chatham Rise, New Zealand, November-December 1983, 31 p. \$28.00
- TR18. HURST, R. J. et al. 1990: New Zealand-Japan trawl survey of shelf and upper slope species off southern New Zealand, June 1986. 50 p. (O.P.) (\$15.00 photocopy)
- TR19. WOOD, B. A. et al. 1990: Tagging of kahawai, Arripis trutta, in New Zealand, 1981-84, 15 p. \$15.00
- TR20. NELSON, W. A. et al. 1990: Phenology of the red seaweed Porphyra (karengo) at Kaikoura, South Island, New Zealand. 23 p. \$15.00
- TR21. MICHAEL, K. P. et al. 1990: Design and performance of two hydraulic subtidal clam dredges in New Zealand. 15 p. (O.P.) (\$8.00 photocopy)
- TR22. TRACEY, D, M, et al. 1990: Orange roughy trawl survey: Challenger Plateau and west coast South Island, 1983. 34 p. (O.P.) (\$12,00 photocopy)
- TR23. JONES, J. B. 1990: Jack mackerels (Trachurus spp.) in New Zealand waters. 28 p. \$27.00
- TR24. McCORMICK, M. I. 1990: Handbook for stock assessment of agar seaweed *Pterocladia lucida*; with a comparison of survey techniques. 36 p. \$30.00
- TR25. LIVINGSTON, M. E. et al. 1991: Abundance, distribution, and spawning condition of hoki and other mid-slope fish on the Chatham Rise, July 1986, 47 p. \$30.00
- TR26. CLARK, M. R. & TRACEY, D. M. 1991: Trawl survey of orange roughy on the Challenger Plateau, July 1990. 20 p. \$25.00
- TR27. CLARK, M. R. 1991: Commercial catch statistics for the orange roughly fishery on the Challenger Plateau, 1980–90. 11 p. \$15.00
   TR28. HORN, P. L. 1991: Trawl survey of jack mackerels (*Trachurus* spp.) off the central west coast, New Zealand, February-March 1990. 39 p. \$28.00
- TR29. WEST, I. F. 1991: A review of the purseseine fishery for skipjack tuna, *Katsuwonus pelamis*, in New Zealand waters, 1975-86. 26 p. \$20.00
- TR30. HURST, R. J. & BAGLEY, N. W. 1992: Trawl survey of barracouta and associated finfish near the Chatham Islands, New Zealand, December 1985. 36 p. \$22.00
- TR31. TONG, L. J. et al. 1992: A manual of techniques for culturing paua (Haliotis iris) through to the early juvenile stage. 21 p. \$30.00
- TR32. CLARK, M. R. & TRACEY, D. M. 1992: Trawl survey of orange roughy in southern New Zealand waters, June-July 1991. 27 p. \$24.00
- TR33. SAUL, P. & HOLDSWORTH, J. 1992: Cooperative gamefish tagging in New Zealand waters, 1975-90. 24 p. \$26.00
- TR34. LANGLEY, A. D. 1993: Spawning dynamics of hoki in the Hokitika Canyon. 29 p. \$27.00
- TR35. CLARK, M. R. & TRACEY, D. M. 1993: Orange roughy off the southeast coast of the South Island: exploratory and research fishing, June-August 1992. 30 p. \$25,00
- TR36. LIVINGSTON, M, E. & SCHOFIELD, K. A. 1993: Trawl survey of hoki and associated species south of New Zealand, October-November 1989. 39 p. \$30,00
- TR37. CLARK, M. R. & THOMAS, C. D. B. 1994: Exploratory fishing for orange roughy and oreos in regions of the Macquarie Ridge and Pukaki Rise, July 1993. 19 p. \$20.00
- TR38. COBURN, R. P. & DOONAN, I. J. 1994: Orange roughy on the northeast Chatham Rise: a description of the commercial fishery, 1979–88. 49 p. \$30.00
- TR39. CRANFIELD, H. J. et al. 1994: Dredge survey of surf clams in Cloudy Bay, Marlborough. 18 p. \$20.00
- TR40. BALLARA, S. L. & SULLIVAN, K. J. 1994: Catch rates, size composition, and spawning condition of hoki in the Puysegur area, 1992. 16 p. \$20.00
- TR41. LIVINGSTON, M. E. & SCHOFIELD, K. A. 1995: Trawl survey of hoki and associated species on the Chatham Rise. November-December 1989. 31 p.