

NEW ZEALAND
MINISTRY OF AGRICULTURE AND FISHERIES

FISHERIES TECHNICAL REPORT
 No. 122

ROCK LOBSTER SALINITY TOLERANCE

D. H. STEAD

WELLINGTON, NEW ZEALAND 1973

FISHERIES TECHNICAL REPORT

ROCK LOBSTER SALINITY TOLERANCE
D.H.STEAD

WELLINGTON.
Page Number
SUMMARY 1
INTRODUCTION 1
METHODS 1
DISCUSSION 5
CONCLUSIONS 6
ACKNOWLEDGMENTS 6

SUMIMARY

The experiments were carried out to assess the tolers ance of rock lobsters to sudden changes in salinity, as may occur in areas such as Fiordland if lobsters were held in hull tanks open to the sea. Results showed increasing mortality after a 7% salinity differential but rock lobsters became acclimatised if the differential was less than 3%.

INTRODUCTI ON

The 1970-1971 Select Committee on the Fishing Industry considered among other things, the feasibility of legislation to prevent rock lobsters - Jasus edwardsii being tailed at sea in remote areas of New Zealand. It was suggested that 'wet well' boats be used to keep rock lobsters alive until landed for processing. This system is used in Tasmania and allows sea water to pass through a perforated hull space in which rock lobsters are held.

Apart from the costs of modification to existing freezer boats and possible loss of sea-worthiness there was another major objection, namely that in sheltered anchorages in Fiordland for example, the surface waters of low salinity would adversely affect live rock lobsters in a 'wet well' boat.

The following laboratory experiments were carried out to assess the effects of variable salinities on live rock lobsters.

METHODS

Rock lobsters were obtained by diving, mostly from rocky areas down to 50 feet at Owhiro Bay, Wellington. Clean seawater was taken from the same area and transported to the Fisheries Division Laboratory in large plastic containers.

Specimens were held in large rectangular glass tanks containing well aerated seawater and left for at least 24 hours before commencing experiments. Fresh clean rainwater was used to reduce normal seawater to salinities of 15,20, $25,28,30$ and 32% in six rectangular 10 gallon plastic fish boxes. All tanks were well aerated and fitted with a re-cycling filtration system through glass wool, gravel and
activated charcoal. Food in the form of live limpets (Cellana radians radians) and blue mussels - Mytilus edulis aoteanus was supplied at intervals and all food scraps were removed the following day. Experiments took place in a well insulated laboratory to reduce temperature fluctuations. Temperature and range $\left(13-17^{\circ} \mathrm{C}\right)$. Control specimens were held in seawater $\left(33.6-35^{\circ} / 00\right)$ and two specimens at a time were held in each lower salinity tank for seven days or longer trial periods. Dead specimens were removed and deep frozen. Rock lobsters were taken from seawater and placed in different lower salinities and some were gradually acclimatised in stages down to the lowest salinity of 15%. Specimens were also moved from lower to higher salinities to observe tolerances.

An RS5 Portable Salinometer was used to adjust and check salinities and fresh rainwater was added when required to compensate for evaporation. The laboratory experiments were carried out from 27.9.1971 to 10.11.1971. Rock lobsters were observed while diving and salinities and sea temperatures were recorded in some Fiordland areas in February and July 1972 during a cruise of the "W. J. Scott" to assess the commercial viability of a tuna fishery on the South Island West Coast.

RESULTS

Appendix 1 gives details of each rock lobster specimen used in the trials.

Appendix 2 supplies data obtained in Fiordland.
Table 1 summarises experimental data for rock lobsters taken from seawater (33.6-35\%o) and placed directly in different salinities down to 15%. Controls were held in seawater. Seven day experimental periods 28/9/71-10/11/71.

Table 2 shows results of acclimatisation experiments when survivors from one salinity stage were placed in higher or lower salinities on a progressive basis. Only one of the first five specimens survived the whole range of salinity changes from seawater (33.6-35\%) down to $15^{\circ} / 00$ and back to seawater. The fact that it did, however, shows that rock lobsters can become acclimatised in stages although activity.was much reduced at $15^{\circ} / 00$ salinity.

贵ABLE 1

SALINITY	Number of Specimens	Tail Length Range-Inches	Mean Survival Time	Per Cent Mortality
Control Seawater 33.6-35\%	$6\left\{\begin{array}{l} 3 \text { male } \\ 3 \text { female } \end{array}\right.$	$3 \frac{1}{4}-7 \frac{1}{2}$	7 days	0
$32 \% 00$	$4\left(\begin{array}{l}2 \text { male } \\ 2 \text { female }\end{array}\right.$	$3 \frac{1}{2}-5$	7 days	0
30%	$4\left\{\begin{array}{l}3 \text { male } \\ 1 \\ \text { female }\end{array}\right.$	$3 \frac{1}{2}-5$	7 days	0
28%	$4\left\{\begin{array}{l}3 \text { male } \\ 1 \\ \text { female }\end{array}\right.$	3 $\frac{3}{4}-6 \frac{1}{8}$	5 days 6 hours	50
25\%	$4\left\{\begin{array}{l}3 \text { male } \\ 1 \\ \text { female }\end{array}\right.$	$4 \frac{1}{4}-6 \frac{3}{4}$	4 days 10 hours	50
20\% $/ 00$	$5\left\{\begin{array}{l}4 \text { male } \\ 1 \\ \text { female }\end{array}\right.$	4年-61	4 $\frac{4}{2}$ hours	100
15\%	$6\left\{\begin{array}{l}1 \text { male } \\ 5 \text { female }\end{array}\right.$	$3 \frac{1}{4}-64$	$2 \frac{1}{2}$ hours	100

TABLE 2

Salinity Gradient	Number of Specimens	Tail Length Range (inches)	Mean time in Next Salinity Stage	Mortality Condition of Survivors
$\begin{aligned} & \text { Seawater }\left(33.6-35^{\circ} / 00\right) \\ & \text { to } 32 \% 00 \end{aligned}$	5	$3 \frac{1}{2}-5$	6 days 12 hrs	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
32% to 30%	3	3䂞-5	3 days 6 hrs	$\begin{gathered} 33 \% \\ 1 \text { poor } \\ 1 \begin{array}{l} \text { good } \end{array} \end{gathered}$
30\% to 28%	3	3䂞-5	7 days	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
28% to $25 \% 00$	4	$3 \frac{3}{8}-5 \frac{7}{8}$	5 days 7 hrs	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
25% to 20%	4	$3 \frac{3}{8}-6 \frac{3}{4}$	4 days 13 hrs	$\begin{gathered} 25 \% \\ \text { good } \end{gathered}$
20\%	3	$5-6 \frac{3}{4}$	2 days 16 hrs	$\begin{gathered} 0 \\ \text { poor } \end{gathered}$
15\% to 20%	2	5-5 $\frac{7}{8}$	1 day 2 hrs	$\begin{aligned} & 0 \\ & \text { improving } \end{aligned}$
20\% to to 25%	2	$5-5 \frac{7}{8}$	22 hours	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
28% to $30 \% 00$	2	$5-5 \frac{7}{8}$	16 hours	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
30% to $32 \% 00$	2	5-57	2 hours	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
30% to 34%	2	$3 \frac{3}{8}-3 \frac{1}{2}$	2 days 16 hrs	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
	1	4 ${ }^{\frac{1}{2}}$	6 days $12 \frac{1}{2} \mathrm{hrs}$	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
32% to $35 \% 00$	2	5-5 ${ }^{\text {7 }}$ "	8 days 12 hrs	$\begin{aligned} & 50 \% \\ & \text { poor } \end{aligned}$
25% to $34.4 \% 00$	1	41	3 days	$\begin{gathered} 0 \\ \text { good } \end{gathered}$
$25^{\circ} / 00$ to $35 \% 00$	1	4 4	2 hours	100
15\% $\%$ to $34.6 \% 00$	1	$6 \frac{3}{4}$	2 hours	100

DISCUSSION

The experimental results show that rock lobsters can tolerate changes in salinity provided that the differential is not too great.

Specimens remained alive and in good condition for the seven day trial period when transferred from seawater ($33.6-35 \%$) down to salinities of 30% i.e. a difference of $3-5^{\circ} \%$. When this differential was increased to $7-10 \%$ half of the specimens died and the survivors were in poor condition. When the differential increased to between 10 and 20% all specimens died within 4-5 hours. The abdominal segments swelled and movement became sluggish, the apparent cause being the failure of the excretory and osmo-regulation apparatus, the antennary glands, to cope with the difference in salinities between body fluids and the aquatic environment.

When specimens which had become acclimatised to low salinities by stages were put back into normal seawater there was again a high mortality e.g. of three specimens acclimatised to $15-25^{\circ} \%$ salinities and put back into seawater ($35^{\circ} \% 0$), two died within two hours and abdominal shrinkage due to loss of body fluids was observed.

Appendix 2 shows some salinity data from Fiordland. For six areas sampled the mean surface galinity was 18.6%, Heavy rainfall and run-off into these confined bays and inlets causes very low salinities at the surface. Diving has shown turbid conditions down to about six feet in many areas due to mixing of fresh and salt water. The difference between mean salinities of 18.6% and seawater is about 16% which is enough to kill most rock lobsters. The evidence, therefore, suggests that the use of 'live-well' boats with hull tanks exposed to sea would not be feasible in areas such as Fiordland as boats usually anchor overnight in the sheltered inlets at the head of the Sounds.

An alternative method of keeping rock-lobsters alive at sea is to use enclosed sea-water tanks fitted into the hold space. Pumps can be used to circulate seawater, but in certain areas such as Fiordland it would be necessary to
keep the intake pipe below about six feet beneath the surface to avoid pumping in fresh or brackish water.

Aerators and temperature regulating units may also be used with these holding tanks.

CONCLUSIONS

Rock lobsters can tolerate small changes in salinity up to about $5^{\circ} / 00$ but differentials above this resulted in increased mortalities. A rapid change of salinity of $10^{\circ} / 00$ or more resulted in $100^{\circ} \%$ mortality within a few hours. Rock Lobsters became acclimatised if allowed to adjust to each successive salinity stage, the differential not exceeding $5^{\circ} / 00$.

In view of the very low surface salinities in most inner Fiordland Sounds the use of'live well' boats with perforated hulls holding rock lobsters is not considered feasible in this area.

ACKNOWLEDGMENTS

I wish to thank Messrs P. J. Allen and G. H. Clarke of the Fisheries Management Division Laboratory, Wellington for assistance in collecting live specimens while diving, and the Captain and crew of the "W. J. Scott" during work in Fiordland.

APPENDIX 1
 Rock Lobster Salinity Experiments

Specimen 3	Whole Length		$7 \frac{11}{4} / 18.4 \mathrm{~cm}$
Male	Tail Length	-	$41 / 10.1 \mathrm{~cm}$

Tail swelling during 6.10.71 - died approx. $2300 \mathrm{hrs}$.

Specimen 4	
Male	Whole Length Tail Length$-\quad 3 \frac{1}{2} / 13.9 \mathrm{~cm}$

History

Condition
Ex Owhiro Bay 1200 hrs 27.9.71 - Good
34.6% - $1300 / 27.9 .71$ - $1100 / 23.9 .71$ - 22 hours - Good
30% - $1100 / 28.9 .71-0900 / 6.10 .71-7$ days 22 hours Good
28% - 0900/6.10.71 - 0900/14.10.71 - 8 days - Good
$\underline{25 \%}$ - 0900/14.10.71-0900/19.10.71-5 days - Good
Cast shell during night of 16.10 .71
20% - 0900/19.10.71-1200/20.10.71-1 day 3 hours Poor Tail swelling and sluggish during 20.10.71

Died at 1200 hours

Specimen 11
Male
History

Whole Length $9.0 \mathrm{~m} / 22.8 \mathrm{~cm}$
Tail Length $4 \frac{7 m}{8} / 12.4 \mathrm{~cm}$

Condition

Ex Owhiro Bay 1200 hours 27.9.71 - Good
$34.6 \% 00-1300 / 27.9 .71-1100 / 28.9 .71-22$ hours - Good
$20 \% 00-1100 / 28.9 .71-1800 / 28.9 .71-7$ hours - Poor

Tail swelling, sluggish - died about 1800 hours

	Specimen 12		Whole Length	$10^{\frac{1}{8 \prime}} 1 / 27.6 \mathrm{~cm}$
	Female		Tail Length	$6 \frac{1}{4} / 15.8 \mathrm{~cm}$
	History			Condition
	Ex Owhiro Bay	1200 hours	27.9 .71	- Good
$34.6 \% 00$	1300/27.9.71 -	1100/28.9.71	- 22 hours	- Good
15\%	- 1100/28.9.71 -	1700/28.9.71	- 6 hours	- Poor

Vigorous swimming at first, then tail swelling, died 1700 hours

Specimen 13
Male
History
Ex Owhiro Bay 1200 hours 27.9.71 - Good
$34.6 \% 00$ - $1300 / 27.9 .71-1100 / 28.9 .71$ - 22 hours - Good
$\underline{15 \%}$ - $1100 / 28.9 .71-1300 / 28.9 .71$ - 2 hours - Poor
Usual symptoms died 1300 hours

Specimen 14
Female
History

Whole Length $10 \frac{1}{4} 1 / 26.1$. cm
Tail Length $5 \frac{3}{4} 1 / 14.6 \mathrm{~cm}$ Condition
$34.6 \% 00-1300 / 27.9 .71-1100 / 14.10 .71-16$ days $22 \mathrm{hrs}-$ Good 15\% $\%$ - $1100 / 14.10 .71$ - 1230/14.10.71-1六hours - Poor Usual symptoms - body swelling died 1230 hours

Specimen 20
Male
History

Whole Length $6 \frac{71}{8} / 17.4 \mathrm{~cm}$
Ta.il Length $3 \frac{3}{4} 1 / 9.5 \mathrm{~cm}$
Condition
Ex Owhiro Bay 1100 hours 4.10 .71 - Good
$33.6^{\circ} / 00-1200 / 4.10 .71-1300 / 1.11 .71$ - 27 days 1 hour - Good
$\underline{28 \%}$ - $1300 / 1.11 .71-0830 / 8.11 .71-6$ days 191 hours - Good
$33.6^{\circ} / 00-0830 / 8.11 .71$ - 0830/11/11/71-3 days - Good
Still alive and in good condition in normal seawater after 11.11.71

Specimen 21
Female
Whole Length $5 \frac{7}{8} 11 / 14.8 . \mathrm{cm}$
Tail Length $3 \frac{1}{2} 1 / 8.9 \mathrm{~cm}$
History
Condition

Ex Owhiro Bay 1100 hours 4.10 .71 - Good
$\frac{33.6 \%}{30}-1200 / 4.10 .71-1300 / 1.11 .71-27$ days 1 hour- Good
$\frac{33.6 \%}{33}-1300 / 1.11 .71-0830 / 8.11 .71-6$ days $19 \frac{1}{2}$ hours - Good
$-0830 / 8.11 .71-0830 / 11.11 .71-\underline{3}$ days - Good

Still alive and in good condition after 11.11.71.

Specimen 22
Female

Whole Length $7 \frac{3}{4} 1 / 19.6 \mathrm{~cm}$
Tail Length $4 \frac{1}{2} \mathrm{~m} / 11.4 \mathrm{~cm}$

History

33.6%		$\begin{aligned} & \text { Ex Owhiro } \\ & 1200 / 4.10 .71 \end{aligned}$		$\begin{aligned} & 1100 \text { hours } \\ & 1300 / 1.11 .71 \end{aligned}$	$\begin{gathered} 4.10 .71 \\ -27 \mathrm{da} \end{gathered}$	$\text { s } 1 \text { ho }$	-	$\begin{aligned} & \text { Good } \\ & \text { Good } \end{aligned}$
32%		1300/1.11.71		08300/8.11.7	$\text { - } 6 \text { days }$	$19 \frac{1}{2} \mathrm{hrs}$		Good
33.6%		0830/8.11.71		remained				

Specimen 23	(Specimen 2)	Whole Length
Female		Tail Length

History Condition
Ex Owhiro Bay 1200/27.9.71
Remained in seawater (35%) after 11.11 .71 as control for next series.

Remained in good condition.

History

Condition

Ex Owhiro Bay 1100 hours 4.10 .71 - Good
$28^{\circ} / 00$ - 1045/8.11.71-2300 hours approx. 9.11.71 - Poor

Body swelling - sluggish movements. Died during night of 9.11.71. i.e about $1 \frac{1}{2}$ days

Specimen 28	Whole Length $5 \frac{5}{8} \mathrm{~m} / 14.3 \mathrm{~cm}$
Male	Tail Length $3 \frac{3}{8 \prime \prime} / 8.6 \mathrm{~cm}$

History

Condition

Ex Owhiro Bay 1700 hours 4.10 .71 - Good

Specinen 29	Whole Length	$5 \frac{5}{8} \mathrm{n} / 14.3 \mathrm{~cm}$
Male	Tail Length	$3 \frac{3}{3} 1 / 8.6 \mathrm{~cm}$

History

Condition

Ex Owhiro Bay 1100 hours 4.10 .71 - Good
$33.6 \% 0$ - $1200 / 4.10 .71$ - 1045 hours 8.11 .71 - 34 days $22 \frac{1}{4} \mathrm{hrs}$ - Good
32 $/ 00$ - 1045/8.11.71 - 0800/10.11.71 - 1 day $21 \frac{1}{4} \mathrm{hrs}$-Good
Specimen jumped from tank on 9.11.71, was found on same day still alive and was replaced. However, this may have accelerated decline. Found dead with swollen tail on 0800/10.11.71.

Specimen 30 (Specimen 2)

Female

Used as control - held in 31.4% until end of experiments remained in good condition.

APPETDIX 2

Fiordland Hydrology - "W. J. Scott" - February and July 1972
Vertical Profiles with RS_{5} - Salinometer

AREA \& DATE	DEPTH (feet)	$\begin{aligned} & \text { SALIN ITY } \\ & (\%)=0 \end{aligned}$	SEA TgMPERATURE
Harrison Cove	Surface	20.6	15.3
Milford Sound	15	32.3	-
7-2-72			
Daggs sound (entrance) Anchorage Arm$8.2 .72$	Surface	34.5	-
	Surface	6.0	12.0
	2	26.0	14.0
	3	30.0	15.0
	5	30.6	15.0
	20	32.2	15.4
Revolver Bay Preservation Inlet $9.2 .72$	Surface	23.2	14.3
	5	24.1	14.5
Isthmus Sound Preservation Inlet $10.2 .72$	Surface	27.7	14.4
	60	33.8	13.7
Seymour Island Doubtful Sound 11.2 .72	Surface	25.0	16.2
	6	27.9	16.1
	20	34.7	14.2
	50	35.2	13.3
Fanny Bay Dusky Sound 15.7 .72	Surface	9.4	6.3
	34	34.8	12.4

