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PREFACE

A half-day workshop on tidal inlet stability was convened by the Water Quality
Centre, Ministry of Works and Development, Hamilton, as part of the 1985
Australasian Conference on Coastal and Ocean Engineering, at Canterbury
University, Christchurch, New Zealand on 4 December 1985. The workshop was
attended by a wide range of people including scientists, engineers and planners
from government departments, consulting firms, local authorities, universities,

harbour boards and industry from New Zealand and overseas (Appendix I).

The objectives of the tidal inlet stability workshop were to: (1) review New
Zealand and overseas research, (2) discuss the techniques available for
assessing tidal inlet stability, and (3) identify research needs.

A background paper written by the authors and presented by T M Hume, is
reproduced in this publication. It outlines management problems in inlets and
reviews recent overseas and New Zealand research on tidal inlet stability
(1975-1985). To supplement the review the bibliography of tidal inlet stability
(Appendix II) lists: (1) a selection of 31 pre-1975 publications on tidal
inlets, considered "classics" on this subject by the compilers of this
bibliography and, (2) important 1975-85 overseas publications, including a more
exhaustive 1ist of New Zealand works on this and related topics. The background
paper also describes the application of research to management problems,
examines the use and abuse of existing knowledge and tools, and identifies areas

for future research. This document is particularly focussed on management
problems in New Zealand inlets.

The background paper and related topics were then open for general discussion.
The proceedings are reported here under subheadings, not necessarily in the
order they were raised at the workshop, largely because some of them were

mentioned more than once. Professor F Gerritsen made closing remarks.

Appendix III 1lists technical papers presented at the conference relating to the

subject of tidal inlet stability which are presented in the conference

preprints.

The purpose of this publication is to report the proceedings of the tidal inlet
stability workshop, create an awareness of tidal inlet stability problems, and
collate and disseminate up-to-date information on the topic in a form useful to
resource managers and planners.



TIDAL INLET STABILITY:
A WORKSHOP BACKGROUND PAPER

T M Hume and C E Herdendorf
Water Quality Centre
Ministry of Works and Development
Ham1ilton

This paper outlines management problems in inlets, reviews recent overseas and
New Zealand research on tidal inlet stability (1975-1985), describes the

application of research to management problems, examines the use and abuse of

existing knowledge and tools, and identifies areas for future research. This

document is particularly focussed on management problems in New Zealand inlets.

INLET MANAGEMENT PROBLEMS
Tidal inlets occupy a unique position on the coast because they form the 1link
between open coastal waters and sheltered inland waterways. Commercial and

residential development at inlets and in adjacent areas has generated the need
for technical information to facilitate planning, and for impact assessment to

achieve a balance between commercial, recreational, and environmental interests
(Table 1).

Planning for and reporting on the impact of these developments requires a
knowledge of natural changes of inlet stability, together with a means of
predicting the way inlets will respond to man-made changes which affect water

and sediment transfers in the system.

Ideally, managers need to have at their disposal reliable and effective

hydraulic and sediment models to enable such predictions. In the case of the
larger inlets and commercial ports there is often available the considerable

sums of money needed to fund such studies. When these resources are unavailable
predictions must be based on (1) semi-quantitative conceptual models which rely

on an understanding of the processes in natural systems that affect
sedimentation and coastal stability, (2) case studies of similar situations from

which the likely consequence of change can be inferred, or (3) simple empirical



Table 1.

1

Action

Industrial facility
siting

Commercial and residential
development

Installation of power
cables and water supply
pipelines

Reclamations associated
with port and other work

Construction of entrance
training works

Dredging for channel
maintenance and sand
mining (e.g. aggregate,
minerals, beach
nourishment)

Catchment works (e.g. river
diversion, stop-banking,
drainage)

Beach erosion defence

Causeways

Information Gap

Erosion rate and
adequate buffer
frontage

Erosion rate and
adequate buffer
frontage

Bed level fluctuation
and adequate burial
depth

Tidal flow and sediment
transport response,
collective effect

Tidal flow and sediment
transport response

Location, quantities,
tailings disposal, and
tidal flow and sediment
transport response

Tidal flow and sediment
transport response, back-
water effects, ecological
response

Effect on littoral
drift

Effect on tidal compart-
ment and flow patterns,
ecological response

(e.g. changes in shelter)

Information requirements associated with various inlet uses

Risk

Erosion of
site

Erosion of
site

Exposure and
collapse of
utility line

Impairment
of navigation

Impairment
of navigation

Estuary
infilling,
channel
instability

Shoreline
erosion and
channel
instability,
flooding,
change in
ecology

Down-drift
erosion,
channel
inhstability

Siltation,
change 1in
ecology
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models. The latter approach is applicable to numerous small New Zealand inlets.
These typically have small permanent populations but a high influx of persons in
the summer. Local authorities have a small rating base but amenities must be

designed to cope with the high transient populations during vacation periods.

Because the authorities have 1ittle money to investigate problems in each inlet,
it is most efficient and cost effective to systems and to utilise existing, and
develop new, simple predictive models that are of general application to coastal

management problems.

Although this workshop focuses on tidal inlet stability we should always be
aware that inlet stability problems and their solutions need to be considered
along with a host of social, biological and other physical issues. A New
Zealand case that exemplifies this, Maketu Estuary, has been described by Burton
and Healy (1985) and Tortell (1985) (Appendix III). Prior to 1956, Maketu was a
small (2 kmz) barrier spit enclosed river mouth estuary with a catchment of 1178
km2 receiving a mean annual river input of about 50 m3.sec”'. 1In 1956, as part
of a drainage and river control scheme, the Kaituna River was diverted directly
to sea at the Te Tumu cut. This reduced the estuary's catchment area to 28

km2 and freshwater input to a very small amount converting the Maketu estuary to
a microtidal barrier enclosed lagoon. Since this diversion there has been
reported marked shoaling of the inlet, changes in inlet width and in the shape
of the sandspit and changes in the distribution and abundance of fish and
shelifish in the estuary. The ramifications of these changes are considerable,
including loss of navigable waterways and mooring areas, shoreline erosion
inside the inlet, and loss of traditional fishing grounds and food sources for
the local Maori people. Thus, there has been impact on commerce, recreation,

and human values.

Today there is considerable pressure from the local people to divert the river
back into the estuary to return things to their pre-diversion state. Of course
the solution 1is not that simple because since 1956: (1) the river water quality
has deteriorated due to runoff from livestock farms and agricultural land,
sewage from the Te Puke Borough treatment plant, waste from the Rangiruru
Freezing Works and fruit processing plant discharges, (2) the river flow
characteristics have been altered by land use changes and catchment works and
(3) the estuary has changed, the tidal prism has been reduced, the bathymetry
has changed and the textural characteristics of the sediments have altered.

Simply diverting a different river back into a different estuary will not
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reinstate the pre-diversion situation. In fact, it could have a marked
detrimental effect on present shellfish quality and flood protection works

around the estuary.
The situation is complex, the answers need to be multidisciplinary.

OVERSEAS AND NEW ZEALAND RESEARCH

There is a wealth of information on tidal inlet stability in the literature.
The bibliography presented at the end of this paper lists: (1) a small
selection of pre-1975 "classic" publications on tidal inlet stability and

(2) the more important 1975-1985 overseas publications and New Zealand works on
the topic.

In New Zealand the bulk of research on tidal inlet stability has been undertaken
as part of university research, notably by the Earth Sciences Department of
Waikato University. Until recently the work has primarily been done as part

of broader estuarine research and undertaken on an estuary-by-estuary basis
(e.g., Hohoura, Rangaunu, Ngunguru, Whangarei, Mangawhai, Mahurangi, Auckland,
Tauranga, Ohiwa, Wellington, Pauatahanui, Waitara, Kawhia, Manukau, Pelorous
Sound, Avon-Heathcote, Delaware and the sounds of Fiordland). Most of these

works are largely descriptive in nature.

Recently, detailed process and modelling studies, as part of port development
investigations, on estuary and tidal inlet hydraulics and sediment transport
have been published on Whangarei Harbour (works by Black, 1983; Danish

Hydraulics Institute, 1982; Healy, 1981) and Tauranga Harbour (works by
Barnett, 1985; Black, 1985 and Healy, 1985).

The only regional studies are works by Furkert (1947) and Heath (1975).
Integration of data from more recent studies into a regional framework is being

undertaken by the authors of this paper.

Studies in progress include those for north-east coast North Island inlets (Hume
and Herdendorf), Rangaunu (Pickrill), Auckland estuaries (Hume), Whangapoua

Harbour (Colby), Maketu (Burton; Kingston Reynolds Thom & Allardice), Nelson
(Barnett) and Lyttelton Harbour (Curtis).

APPLICATION OF RESEARCH TO MANAGEMENT PROBLEMS

A number of techniques are available to assess inlet stability and design
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improvements. To facilitate discussion of these it is first important to

briefly review inlet types and clarify relevant terminology.

Terminology
Tidal inlets are defined here as all connections between the open ocean and a

bay, fiord, lagoon, or "lake", and through which reversing tidal flows are

concentrated.

1. Inlet types

Although estuarine basins have a variety of origins, from a geological
standpoint most have formed since the last glacial maximum (Otiran) when
sea-level stood about 130 m below the present level (18000-20000 yr B.P.). With
eustatic sea-level rise to the present level, about 6500 yr B.P., the sea
flooded river valleys and coastal embayments. Since this event some of these
features have undergone modification by infilling in the headwaters,
particularly when catchments are small. Conversely, where fluvial input is
large and coastal wave energy and currents are low, sediments are transported
through an infilled basin and build delta complexes on a prograding coast. The
entrances to submerged valleys and embayments on some deeply indented coasts
have been constricted and partly infilled by the development of barrier
features. The size and orientation of these features reflect quantities and

direction of littoral drift, and the direction of wave approach.

Hume and Herdendorf (1985) have grouped New Zealand estuaries into five broad
categories that reflect mode of origin namely: (1) fluvial erosion, (2) marine
erosion, (3) tectonic, (4) volcanic, and (5) glacial. These origin categories
are subdivided morphometrically, particularly on their inlet characteristics,

into 8 classes and .15 types which reflect catchment and coastal hydraulic and

sedimentologic processes (Fig. 1). Type examples are illustrated in Fig. 2.

Those of fluvial erosion origin divide into 4 classes and 10 types.

Unrestricted inlets (Type 1) are funnel-shaped and branched drowned valley

systems with little fluvial input and have unrestricted entrances situated on

sheltered, low littoral drift shores. Headland enclosed inlets (Type 2), are

drowned valley systems with little fluvial input, and the inlet throat is

constricted by rocky headlands situated on Tow Tittoral drift shores. Barrier

enclosed lagoons which occur commonly on the north-eastern coast, of the North

Island, have small freshwater input and are generally formed on exposed

coastlines when littoral drift builds a double-spit (Type 3) or single-spit



NEW ZEALAND ESTUARY
CLASSIFICATION

Mode of origin Morphometry
—_—— N

__Unrestricted Inlet
(Type 1)

| Headland Enclosed
Inlet (Type 2)

FLUVIAL EROSION —
Double spit enclosed (Type 3)
Single spit enclosed (Type 4)
Tombolo enclosed (Type 5)

Island enclosed (Type 6)

Bay-head beach enclosed (Type 7)

Straight-banked (Type 8)
— River Mouth ——ESpit—Lagoon (Type 9)
Deltaic (Type 10)

| Barrier Enclosed
Lagoon

MARINE EROSION — Marine Erosion Embayment (Type 11)

o Fault Defined Embayment (Type 12)
TECTONISM l-: Diastrophic Embayment (Type 13)

VOLCANISM — volcanic Embayment (Type 14)

GLACIAL EROSION — Glacial Embayment (Type 15)

Figure 1. New Zealand estuary classification

13
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(Type 4), tombolo (Type 5), barrier island (Type 6) and bay-head beach (Type 7)
barriers that restrict exchange between the estuary and the sea. River mouth
estuaries are characterised by high freshwater inflow from large catchments, and
are subdivided into straight-banked (Type 8), spit-Tagoon (Type 9), and deltaic
(Type 10) estuaries which reflect varying degrees of fluvial and littoral

sediment input to the systems.

Estuaries of marine erosion origin are those marine embayments (Type 11)

characterised by very small catchments, 1little fluvial input, and wide rock
headland entrances. Estuaries of tectonic origin are those fault defined
embayments (Type 12) whose margins are defined by fault boundaries (inlet widths
<2 km) and large diastrophic embayments (Type 13) of more complex origin (inlet
widths >5 km). Estuaries of volcanic origin (Type 14) include small explosion
craters. Estuaries of a glacial origin (Type 15) are represented only in the
South Island by fiords which have deep stable inlets characterised by
depositional sills. Compound estuaries are formed from two or more of the basic

types.

Much of the literature on tidal inlet stability addresses barrier enclosed

lagoon (Types 3-7) and spit-lagoon river-mouth (Type 9) situations. Deltaic

river mouths characterised by high fluvial input (Type 10) are the subject of
another workshop at this conference.

2. Inlet morphology

Morphologically a tidal inlet incliudes the narrow entrance channel together with
the intertidal and submarine deltas that can form at one or both ends of the
entrance channel. The major morphological units are the ebb tide delta, a
lobate sand body formed seaward of the entrance channel; the tidal gorge, the
narrow deep channel at the inlet entrance; and, the flood tide delta, a shield
of sand which develops in the tidal basin, landward of the gorge. These and

other morphological features are illustrated in Fig. 3.

Morphological stability has two main components: (1) location stability and
(2) cross-sectional stability. Location stability describes the lateral
migration of an inlet's entrance channel(s) within the physical bounds of the
estuary. It is strongly affected by the type of inlet enclosure, the sediment
texture, and of course, by entrance training works if present. The position of
inlets shift in response to changes in littoral drift, tide and waves; this is

often a cyclic process. Extreme events such as spit breaching caused hy



UNRESTRICTED INLET BARRIER ENCLOSED LAGOON

TYPE 4 SINGLE SPIT ENCLOSED

TYPE1 TYPE 3 DOUBLE SPIT ENCLOSED

WHANGAPOUA

WAIKOPOUA

TYPE5 TOMBOLO ENCLOSED

HEADLAND ENCLOSED INLET

TYPE 2 RANGAUNU

WHANGAROA

Figure 2. Examples of New Zealand estuary types.



BARRIER ENCLOSED LAGOON RIVER MOUTH

TYPES8 STRAIGHT-BANKED TYPE9 SPIT-LAGOON
TYPE 6 ISLAND ENCLOSED
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()‘ MANGAWHAI

L=

0 1 2 3km

TYPE7 BAY-HEAD BEACH ENCLOSED
TYPE 10 DELTAIC

MOTU

L7

0 1 2 3km

Figure 2 (Continued). Examples of New Zealand estuary types
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Figure 2 (Continued). Examples of New Zealand estuary types
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TIDAL BASIN OCEAN / SEA

I
TIDAL GORGE: EBB TIDAL DELTA

1 [}
{ FLOOD TIDAL DELTA ] i B
1 ! L L
. EBB SH@&P3H. Flooo z MLW
TIDAL asn [g‘;”g'““
: SEA
ebb ramp;, channels;
4) swash platforms; 12) ebb spit;
5)marginal flood channels; 13) spill over channels.
6) marg(nal shoals, B, cross section profile from x
. ' 7)ebb tidal levee; to y through the tidal gorge and
1) coastal barrier or spit 8} ebb delta terminal lobe; over both flood and ebb tidal
headland; 9) the flood ramp; deltas.
2) the tidal gorge; 10) the ebb shield:
3) the main ebb channel and 11) main ebb dominated inner

Figure 3. Tidal inlet morphometry (from Smith, 1984). A, schematic diagram
illustrating the principal morphological features of a tidal inlet
on a sandy coast: (1) coastal barrier or spit headland;

(2) the tidal gorge; (3) the main ebb channel and ebb ramp;

(4) swash platforms; (5) marginal flood channels; (6) marginal
shoals; (7) ebb tidal levee; (8) ebb delta terminal lobe;

(9) the flood ramp; (10) the ebb shield; (11) main ebb dominated
inner channels; (12) ebb spit; (13) spill over channels.

B, cross section profile from x to y through the tidal gorge and
over both flood and ebb tidal deltas.
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overtopping during storms commonly trigger an inlet migratory trend.
Cross-sectional stability relates to the variability of the cross-sectional area
of a tidal channel and its relation to tidal flow characteristics. Bruun
(1978) uses the term 'dynamic stability' by which the elements involved attempt
to maintain a situation characterized by relatively small changes in inlet

geometry.

Assessing Overall Inlet Stability
Existing techniques include analysis of historical data, transferring results
from case studies, application of conceptual models and use of empirical

formulae. No single approach guarantees a complete evaluation of stability.
The recommended method is to perform the analysis utilising a number of

technigques looking for a consistent trend.

1 Tidal prism measurement

Changes in tidal estuary prism with time indicates changing hydraulic and
sedimentologic conditions in an estuary and large scale sediment infilling or
erosion. It is essential to carefully check datums, make field mesurements
under ‘'average' or 'normal' conditions, and 'normalise' data to standard

conditions for these comparisons.

2 Bathymetic and aerial photographic surveys

Historical bathymetric charts, maps, and aerial photographs are used to quantify
the magnitude, locations, and patterns of past changes in inlet channel, shoal,
and shoreline configurations. In New Zealand, vertical aerial photography
generally dates back to about 1940 and bathymetric survey data to the mid 1800s.
For many smaller inlets tidal hydrologic and bathymetric data are scarce.
Analysis of bathymetric charts can also yield additional information on changes
in tidal prism and the capacity of channels to carry flows. 1In all this work
particular care must be taken in reducing all survey data to common datums or

tidal conditions.

Historical trends can be analysed and used to predict future inlet
configurations (based on the assumption that the identified trends will continue
in the near future) (Smith, 1984). Another approach, is to compare the case
under consideration with similar known cases. A classification of estuaries, as

described earlier, is useful for this purpose.
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Comparison of inlet morphometry with conceptual models of inlets - delta

complexes (e.g. Oertel, 1977; Hayes, 1980) provides a semi-quantitative means

of predicting sediment transfers.

4 a/"total ratio

The Q/Mtota

1 ratio, introduced by Bruun and Gerritsen (1960), relates two

important parameters that control inlet stability, namely the tidal prism (2 in

m3) and the total littoral drift toward the inlet (M

total in m3/yr).

Practical examples show that inlet stabilities may be graded as follows (Bruun

1978, p. 376)

/M > about 150:

total

100 < Q/M about 150:

A

total

50 < Q/M < 100:

total

A

20 < Q/Mtota1 50:

/My oeay < 20

Conditions are relatively good, Tittle bar formation
and good flushing

Conditions become less satisfactory, and offshore
bar formation takes place

Entrance bar or shoals may be rather large, they may
be penetrated by a channel improving navigation
conditions. Breaking, however, may take place in
the bar during storm '

A1l inlets are typical "bar-bypassers". Waves break
over the bar during most storms. The reason why
such inlets "stay alive" at all is that often

during a rainy season (1ike the monsoon) they get "a
shot in the arm" by freshwater flows. For
navigation they present "wild cases", unreliable and
dangerous

Are descriptive of cases where entrances may become
unstable "overflow channels", impossible for

navigation (except canoes).

The use of the Q/M,, ¢4 ratio for evaluating the relative degree of stability of

tidal inlet assumes that the tidal prism and littoral drift do not change from

one season to another and that the tide is semi-diurnal and not very skewed

(Bruun, 1976).

While @ is relatively easy to compute, M, . ., is more difficult. It may have to

be evaluated from neighbouring parts of the coast, estimated from dredging
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figures, calculated from littoral drift formulae, measured by tracer

experiments, or determined by monitoring accretion about coastal structures.

5§ Physical and numerical models
A review of the art and science of physical (hydraulic) and numerical modelling
of inlet stabiity is beyond the scope of this paper. Some important references

are presented in the bibliography.

Modern computing techniques and computers have realised solutions to some
complicated hydraulic problems, particularly in the bay and throat areas of
inlets, where wave action is minimal, and where tidal flows dominate the
hydraulics. The weak links at present are in understanding the physics and in
the formulation of sediment transport (bedload and suspended load) in tidal
channels and in representing the mechanics and meandering and migration of tidal

channels.

Assessing Inlet Gorge Stability
Inlet gorge stability can be assessed by the following methods, some of which
provide a means of designing the theoretical stable cross-sectional area of the

inlet gorge:

1 Area-prism relationships (A-Q)
The cross-sectional area of the inlet throat and the tidal prism have been

related according to the power function:

A = cq"

where

gorge cross-sectional area (m2)

tidal prism (m3)

C and n = constants.

in numerous studies (e.g. Le Conte, 1905; O'Brien, 1931, 1969; Jarrett, 1976;
Heath, 1975; Krishnamurthy, 1977; Shigemura, 1980; Vincent and Corson, 1981;
Costa, 1982). The A-Q relationship reflects the fact that that the size of an
entrance is one of the main factors determining the ability of water flow to
transport sediment through the entrance (Bruun and Gerritsen, 1960). Entrances

that conform to the relationship can be considered to be geometrically stable
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(i.e. have the ability to return to their initial configuration after a

disturbance).

When the flow at some point in the tidal reach of an estuary (landwards of the
mouth) is in equilibrium with its morphology, a similar, but less well
correlated A-Q relationship has been found to exist between the channel cross-
sectional area (A) at any point and the upstream volume (Q) (e.g. Pillsbury,
1956; Nelson, 1977; van der Kreeke and Haring, 1979; de Jong and Gerritsen,
1984; Hume, 1984).

A~Q relationships have been used to determine the morphological stability of
inlets, provide a simple method of estimating tidal prism from gorge profile

data, and give a means of calculating a stable inlet gorge cross-sectional area.

2 Depth/width and similar relationship for inlet throats

Mehta (1977) and Bruun (1978) describe linear correlations between mean depth
versus width at the inlet throat for North American inlets without jetties.
They suggest that inlets that lie off the line must either alter in depth or
width to reach a 'dynamic equilibrium'. Vincent and Corson (1981) derived 10
relationships, including depth/width, between inlet physiographic parameters
such as channel lengths and depths to determine characteristic variations in
inlet geometry and information on whether inlet geometry tends toward an
equilibrium,

3 Vnean max criteria

Bruun and Gerritsen (1960) introduced V for the description of cross-

mean max
sectional stability of the gorge. Vmean max = Ymm = the mean maximum velocity

(m.s~7) over the cross-section at spring tide conditions.

Vmean max = Qn/A

where
Qm = peak discharge in section (m3.5'1)
A = gorge cross-sectional area (mz).

The values obtained may be compared to those for other inlets of known stability
reported in the literature.

4 First approximation cross-sectional area of the inlet gorge for design
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purposes (Bruun, 1976)

A = CLam/V T
where
= calculated cross-sectional area at mid-tide (m2)
Q@ = spring tidal prism (m3)
Cz = npon-sinusoidal correction coefficient (0.8-1.0)
Vi = mean maximum velocity (m.s~1')
T = measured tidal period (s).

Similarity of A calculated from this equation to that of A measured in the

field, indicates inlet stability.

5 Stable cross-sectional area of the inlet gorge predicted by Bruun and
Gerritsen (1960)

A = Q/C(Ty/pa)*
where
A = "stable" cross-sectional area of gorge at mid-tide (mz)
Qm = maximum discharge measured during the tidal cycle (ma.s")
c = Chezy-factor = 30 + 5 log A (mx.s-1)
Tg = mean maximum shear stress = pgvzmm/c2 (N.m=2)

p,g = density sea water, acceleration due to gravity
Similarity of calculated A with field measured A indicates inlet stability.
6 Stability shear stress Tg
The mean maximum shear stress (or "determining shear stress") (Bruun, 1978)
gives another measure of stability :

2 2
Tg = pg V mm/C

The value of T4 depends on the littoral drift and the sediment characteristics.
Considering inlets at equilibrium on various coasts, Bruun (1978) found its

value to be in a fairly narrow range.

light Tittoral drift « 3.5 N.m™2 < Tgq < 5.5 N.m™2 ~ heavy littoral drift.

7 Stability/closure curves

The stability of a tidal inlet and its potential for closing, can be analysed
using the 0'Brien and Dean (1972) method. This method combines a
cross-sectional area, A., similar to that of Escoffier (1940), with the
simplified hydraulic analysis of Keulegan (1967). It is applicable to
relatively small tidal bays.
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1 For a given tidal inlet, the following data is required to carry out

stability analysis:

T = tidal period (seconds)

A, = bay/estuary surface area (m? or ft2)

2a, = 2 x mean diurnal tidal amplitude = mean tidal range on the ocean
side of the tidal inlet (m or ft)

f = Darcy Weisbach friction coefficient (dimensionless) = 8 gnz/R1/3.
Where n is Manning's coefficient; n = 0.025 is an
(average value suggested by Mason, 1981)

R = hydraulic radius of the inlet cross-section (m or ft)

= 0.5 + (2.3 % 10°% Ac) is an empirical relationship derived by

Mason (1981)

L = channel/deposition length of the inlet is taken to represent the
distance between the ebb and flood tidal deltas (m or ft),

g = acceleration of gravity (9.81 m.s”2 or 32.2 ft.s'z)

n = 3.14

Ac = inlet cross-sectional area (m2 or ft2)

K = Keulegan repletion coefficient (dimensionless)

where
K = ;:g . q - e (1)
b 2ao (1 + Iﬁ)
v! = velocity coefficient (dimensionless)

This coefficient is obtained from Fig. 37 (b) (p. 47 Mason, 1981, by using
a calculated value of K, equation (1) to find the point on the curve
corresponding to V'.

vmax = maximum average current speed (m.s_1 or ft.s'1)
where
V ) V' n Zao Ab -
max ~ T.A. L

ab/ao = ratio of bay/estuary mean tide range to ocean mean tide range.

2 To obtain the initial value of inlet deposition length, L, one uses the

most recent values of Ac, R, f, and a derived value of K from Fig. 37(c) (p.
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47 Mason, 1981) using the ratio of bay/estuary to ocean tide amplitude

(ab/ao), substituted into equation (1) to derive L. Alternatively, L may be
obtained from measuring the distance between the tidal deltas on aerial

photographs.

3 The derived value of L is then used in equation (1) with a series of A and

values to derive K values. Each K value is plotted on Fig. 37 (b) to obtain
V' values. The V' values are then substituted into equation (2) with the

corresponding Ac values to derive V...

Viax values are plotted against the corresponding A, values on the stability

curve (Fig. 4).

The analysis may be undertaken for a series of probable inlet channel length
values (L) to derive a series of stability curves (L1 cees Ln) (Fig. 5).
Various lengths are important because the length over which the cross-

sectional area may change will influence the hydraulic response of the inlet.

By way of interpretation, the peaks of each curve represent the critical
cross-sectional area (AC* in Fig. 4) for that particular channel length. For
areas less than the critical value, the inlet is unstable; 1i.e. an increase

(decrease) in area causes an increase (decrease) in maximum velocity. For a

tidal inlet to be naturally stable it must operate in the region A, > A *; only
in that region velocities increase with decreasing A, increasing the sediment

transport rate and flushing of the channel.

If events result in the value of A, to drop below A* the inlet is no Tonger
stable because further decrease in velocities will result from a decreasing

profile and the inlet will ultimately close (Escoffier, 1940).

Designing Improvements

In practice one is faced with: (1) stabilising an existing inlet either in
anticipation of future development, or to rectify problems caused by
development, or (2) designing a new inlet where no inlet existed before (rare

in New Zealand).

The aim of inlet stabilisation is to achieve a permanent lateral location as

well as cross-sectional stability. In the inner channels and gorge sections of

the inlet, conditions are relatively simple because tidal currents are the major
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Escoffier closure curves. During closing both maximum velocities and
maximum tidal discharges are changing: the velocities increase and
the discharges decrease starting from an equilibrium position (Ag,

Vs)‘ After the critical region on the curve is reached (Ac*, \' *)

I

max
both velocities and discharges decrease until closure.

= Vmax Ac
constant

Closure curves for variable lengths (L) of inlet channel.
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driving force and hydrodynamic models are successfully applied. However, the
present state of numerical modelling does not permit detailed quantitative
predictions of sediment transport and deposition seawards of the gorge. Even in
simple situations where models may be applied, the necessary detailed field
observation and calibration procedures will make them an expensive tool, often

precluding their use.

The interim approach is therefore to use field measurements and well established
numerical hydrodynamic models to calculate tide levels and currents, and to
predict changes in bottom configuration from empirical relationships between the
hydrodynamic parameters, littoral drift, and channel dimensions such as those
described earlier. In practice, the method is applied as an iterative scheme
where: (1) the changes in tide conditions are determined by field measurement
and/or predicted from a hydrodynamic model; then (2) channel profiles and
littoral drift are adjusted based on the empirical relationships between tide
parameters and channel dimensions. In the process of improving inlets for
navigation, adjustments are achieved using engineering works (eg, dredging,
reclamation, building jetties, groynes, and weirs) that alter channel dimensions
and littoral drift into the inlet. This process is repeated until stability

conditions are fulfilled. Bruun (1978, p. 384-386) outlines this procedure.

In utilising techniques which are frequently applied overseas, we must bear in

mind constraints imposed by the New Zealand scene. For instance, on the
northeast coast of the North Island littoral drift is low (<100 x 103 m3.y'1,
Gibb 1978), and numerous headlands 'pocket' the coast into several reaches.
Because the drift is Tow, the net annual drift can vary markedly in quantity and
direction due to episodic storm events. Inlets formed between a rock headland

and a barrier spit are common and provide important entrances to sheltered
mooring areas. With the exception of several major ports there is little

commercial development in the inlets; although there is increasing use by small
inshore fishing craft, charter boats, recreational power boats, and yachts.

However, there is usually little money for inlet improvements, and jetties are
rare.

UTILISING EXISTING KNOWLEDGE AND TOOLS

Two key questions that could be addressed by this workshop are :

1 Are we making good use of existing knowledge and tools? If not, what is

the best means of communicating the information to potential users?
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The paper so far has demonstrated that there is considerable overseas

information available on the subject of tidal inlet stability covering
description, theory and engineering, and that only recently has detailed

work begun in New Zealand.

Is the overseas information applicable to the New Zealand scene? Have
New Zealand users tested it before application? Has it been applied

correctly?

The area-prism relationship is one of the most universally applied

techniques for assessing inlet stabilty. Application of this method

provides examples for considering the above questions.

Example 1

For a range of 16 New Zealand inlets Heath (1975) determined:
Q = A0.98,104.21 (r2 = 0.903)

This relationship has since been applied to research and ehgineering

situations (e.g. Kirk, 1981; Healy, 1981; Willet, 1982; Healy, 1983; McCabe,
1985; Paton, 1983) to assess the degree of inlet stability. For these
applications inlets having a smaller A and/or a larger Q than those
predicted by the equation are designated "erosional”, while those having

a larger A or/or a smaller Q are considered to be "depositional" inlets.

However, in some cases interpretations have not been valid because the inlet

in question has not plotted outside a specified confidence interval and also
because comparisons are made beyond the original data field (Fig. 6).

Example 2

The predictive capability of area-prism relationships can be improved by
identifying individual relationships for various estuary classes (Fig. 1).
Recent analysis of 75 New Zealand inlets by the authors of this paper has
shown that New Zealand inlets are best described by distinct A-Q
relationships (Fig. 7) that correspond to the major estuary classes.

Power function transformations give improved correlations over linear,
logarithmic or exponential regressions. The relationships are descriptive
of the forces operating at the inlet. For instance, barrier enclosed

Tagoons on littoral drift shores have the lowest A-Q ratio (i.e. smallest
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inlet compared to tidal prism) reflecting continuous adjustments in inlet
geometry made possible by sediment availability and strong tidal currents.
At the other end of the spectrum are embayments of marine erosion and
tectonic origins that occur on shores with negligible littoral drift and
have comparatively wide inlets (high A-Q@ ratio) because of weak tidal flows

and low sediment availability.

FUTURE RESEARCH NEEDS

One of the aims of this workshop is to bring together the collective experience
of those present to identify, for the Australasian situation, key areas for
research on tidal inlet stability. In what areas do we need to do research or

survey work to improve existing knowledge and tools? Suggested research and
survey questions follow:

1 what is the role of extreme events (e.g. river floods, wave topping and
barrier breaching, currents generated by extreme tides and effect on
sediment transport of wave action on ebb tide delta) in determining inlet

stability.

2 Should technical surveys, monitoring and documentation of the before and
after situations of coastal developments be made to allow objective

assessments of the effects on inlet stability?

3 What is the interrelationship between inlet-delta systems and adjacent

barrier beaches.

4 What types of data do we need to collect (on a national basis) so that we
can more fully understand how tidal inlets function and make better use of
existing tools? (e.g. wave climate information to improve estimates of
littoral drift, regular ground, or aerial photography surveys of inlet

bathymetry).

5 What is the influence of marine benthic organisms (e.g. shell lags, diatom
mats, and polychaete worms) on inlet stability? (Animal/sediment

relationships).

6 What is the time-frame of events relating to location and cross-sectional

stability?

7  Should further descriptive studies of different inlet types, their

morphology and in particular the development of "situation-models" of inlets
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which describe alterations in response to winds, waves and current forces be
undertaken?

what is the best approach to application and testing of overseas models to
the New Zealand scene?
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TIDAL INLET STABILITY:
WORKSHOP OPEN DISCUSSION

T M Hume and C E Herdendorf

Water Quality Centre
Ministry of Works and Development

Hamilton

The workshop discussion has been summarised under five themes. Technical papers

referred to in the discussion are presented ir Appendix III.

Empirical Relationships

1. The empirical relationships presented in the position paper were the focus
of initial discussions, in particular the use of the area-prism relationship
(Fig. 6). Initially the concept of 'stability' was discussed. It was agreed
that stability refers to a state of dynamic equilibrium because all inlets make
constant adjustments in inlet cross-sectional area in response to changes in
physical parameters such as tidal flows and littoral drift. One school of
thought was that those inlets conforming to the empirical relationship, and
lying within the confidence limits, were 'stable', while those outside these
bounds were 'unstable' and characterised by deposition or scour in the inlet.
The other view was that a 'stabte' inlet was one that if disturbed by an event
such as a sudden influx of littoral sand, would plot off the line, but would
respond by adjusting area and prism to move back onto the line. Whereas an
'unstable' inlet would show no recovery and keep moving to a situation of total
closure or increasing throat area. D. Foster quoted an example of the latter
circumstance from the Forster-Tuncurry entrance on the coast of New South Wales.
Here, groyne entrance works resulted in an increase in tidal prism and inlet
velocities which scoured the bed, increasing the throat cross-sectional area.
Inlet velocities have in turn increased, the throat continues to scour and the
situation is very unstable. This situation is likely to continue until the

tidal range in the inlet reaches that of the ocean.

Prof. Gerritsen related the 'stability' concept back to the Escoffier curve

described in his opening address (Appendix III). For the case of a tidal inlet

connecting the ocean with the bay or lagoon, the velocities in the inlet depend
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heavily on the forces from the bay. By plotting the maximum velocity against
the gorge area of the inlet cross-sectibn, then in normal conditions we usually
find that a stable cross-section and a stable velocity belong together.

If the inlet closes, either by man or by nature, then the velocity increases and
generally a curve develops, as described by Escoffier (1940), the so-called
Escoffier Curve (Fig. 4). Observation of this curve shows there are generally
two points with the same velocities, but quite different areas - an area that is
stable (As) and an area thatlmight look stable but is not stable. The reason
being that, if on the right-hand side of the curve the velocity increases
because of a natural event, for example a storm or hurricane dumps a slug of
sand in the inlet and the cross-section decreases, then with increased velocity
there is increased flushing capacity which tends to open it up again. 1In this
way there is a tendency for the inlet to reach equilibrium. For the left-hand
side of the curve, there is the situation where cross-sectional area is
decreasing because of a natural event, leading to decreasing velocities and
further area decrease. So the right-hand side of the curve is a stable curve

because it tends to bring that situation to natural stability.

A-P relationships were first derived by 0'Brien in 1931. However, there are
other ways of plotting the data which are equally meaningful. One is to plot

cross-sectional area versus V the reason being that this velocity is an

important parameter affectingmzzgiﬁzﬁt transport. It is also useful from an
interpretive point of view to indicate the sediment grain size against each
point on the plot. This gives a relationship that is more descriptive of the
hydraulics of the situation. Inlets with low velocities tend to be typical of
low littoral drift coasts, whereas high velocities are an indirect indication of

signhificant sediment supply. V velocities are typically in the order of

] , mean max
0.8-1.0 m.s = for 'equilibrium' inlets, however they may be lower than this for

certain inland waters.

2. Some speakers warned of reading too much into empirical relationships,
particularly when used as predictive tools. For instance there are field errors
involved in measuring area and tidal prism, particularly if the data are taken
off bathymetric charts (the latter method should only be used as a first
approximation). R. Nelson, referring to a three year study of the Barwon Heads
inlet Victoria, Australia (see Nelson and Keats, 1980 in Appendix II), cautioned
that the antecedent conditions that applied at the time of measurement markedly

influenced such relationships. Their data showed that statistical uncertainties
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associated with predicting an inlet's equilibrium area from existing equilibrium
equations are similar to those associated with the natural variability in throat
dimensions of an inlet. That is to say, much of the scatter of the data could
be accounted for by antecedent conditions which would be different for each
inlet. Thus, attempts to refine equilibrium equations will not be profitable
unless the response of individual inlets to various hydraulic and meteorologic

events (floods, storms etc) is known.

3. While empirical models are one approach, it is important that more effort be
applied to understanding and developing the more compliex hydrodynamic theories
behind these relationships. One obvious example is the Q/Mtot ratio. What is
that interplay between tidal prism and littoral drift that keeps an inlet open

or shut? The Q/M. . ratio obviousliy affects the area-prism relationship.

It was noted that of all the empirical equations presented none had grain size
represented in them. While this is not a problem when one is comparing inlets
of similar sediment characteristics, it is indicative of the simplicity and
potential shortcomings of the approach. We need to be developing models that
take into account more of the variables that dictate inlet stability namely,
1ittoral transport, fluvial sediment, stochastic freshwater inflow, grain size
and density and tidal flow. Initially we need a better understanding of the
physics of these processes, a point highlighted in Prof. Gerritsen's opening
address (Appendix III). T. Healy gave an example of the problems in sediment
transport modelling on North Island coasts where sediments are frequently
bimodal (often biogenic and terrigenous components present) and particle density
may vary markedly due to the predominance of pumiceous, quartzofeldspathic or

magnetitic sands.

It is also important that inlet modelling improve the formulation of

two-dimensional processes, rather than persue the simpler one-dimensional
approach described earlier. This is particularly relevant considering that
inlet processes are two-dimensional, littoral drift enters the inlet
asymmetrically and flows across the inlet are two-dimensional. J. Hinwood

described a model developed at Florida a few years ago which divided the
entrance area into about six boxes or elements. In the two or three seaward

boxes the effect of wave action in stirring sediment was considered so that a

different critical threshold speed was used. This did in fact provide a

difference between a shallow and a deep entrance area. The shallow inlet
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experienced relatively more stirring under the same wave action as the deep one.
This model is a start on the two-dimensional approach, which is the only way to

take into account some of the higher order variables.

Such an approach can overcome some of the difficulties seen in situations where
the critical velocity (at least according to some criteria) appears to be
achieved in a stable channel, and yet the channel is known to have regions of
very high transport in different directions. So, the averaging being performed
appears to be misleading us quite severely about the dynamics. We are trying to

homogenise a problem that is dramatically non-homogenous.

4. T. Healy saw the need to improve the conceptual models of inlet processes.

A method by which this could be achieved is by examining the data from studies

where detailed field measurements had been made to calibrate numerical models.

Conclusions
1 Do not rely too heavily on empirical relationships, they are an

over-simplification of complex processes. They are not magic formulae.

2 Be aware of the errors involved in field measurement of bathymetric and

hydraulic parameters and how they influence accuracy of models.

3 Work towards incorporating empirical relationships into more complex

hydraulic models that take account of the system in a two-dimensional sense.

4 Try and develop better conceptual models.

MORPHOLOGICAL CONTROLS ON INLET STABILTY

There was a short discussion on the influence of morphological controls on inlet
stability. It was queried as to whether some degree of 'relative stability' was
indicated by the fact that large New Zealand estuaries commonly have throats,

30 m or more deep, with a well defined entrance gorge, whereas small inlets tend
to be much flatter in cross-section. One opinion was that the deep gorge of
large inlets could be accounted for by the presence of a rock headland on one
side of the inlet and the flatter profiles of small inlets equated with
double-spit entrances. T. Hume reported that for inlets on the north-east coast

of the North Island, inlet profile appears to be unrelated to estuary size.
Small estuaries (Q<106m3) virtually all have a rock headland on one side and
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double spits are rare (and often temporal). These inlets show the entire range
of flat symmetrical cross-sections through to asymmetrical inlets where there is
a clearly defined gorge. Furthermore bed sediments range from extensive lag

deposits across some throats (e.g. Whangateau) to mobile dune bedded sands (e.g.

Whangamata) across others indicating a wide range of stability.

Conclusions

1 No distinct and consistant geomorphological controls on inlet stability are
apparent from existing experience.

2 Some such controls are suspected, but more detailed field work and analysis

are needed to define them.

RELATIONSHIP BETWEEN ESTUARIES AND THE INNER CONTINENTAL SHELF

The workshop discussed the relationship between sediments of the inner shelf and
those of the inlet delta system. Sometimes in considering coastal sediment
supplies to the delta systems we are inclined to consider 1littoral drift and
ignore the role of across shelf (shore normal) sediment transport that can feed

inner shelf sands to the littoral system.

These processes have been reported acting on the Coromandel Peninsula (Dell et
al., Appendix III) and Bay of Plenty (Dahm and Healy, Appendix III) coasts, New
Zealand, in papers at this conference. The inshore zonation of sediments along
much of the pocketed, low Tittoral drift, east Coromandel coast, consists of a
medium (to coarse) sand beach, a fine sand sea floor with small-scale
symmetrical ripples down to 20 m depth, and a more complex zone of sediments
between 20 and 40 m depth dominated by medium to coarse sands wWith symmetrical
megaripples, but incuding patches of fine sand. Beyond 40-50 m depth muddy very
fine sand deposits occur. It is postulated that during onshore storm swells the
megarippled coarse sediment can move shoreward under the influence of bottom
mass transport, certainly to depths of 20 m, probably shallower and perhaps onto
the beach. The dynamics of these processes are still being investigated. Once

in the littoral system the medium sands can nourish the inlet bar systems.

M. Geary and A. Griffin reported a similar zonation of sediments on the New South
Wales coast, Australia. Here there is a gradual fining offshore from the

medium beach sands, or alternatively there is an indistinct break between the
medium and fine sands at depths anywhere between 5-25 m. Several kilometres out

relict coarse deposits or very coarse sand, and fairly large lobes of sand have
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been reported in depths ranging from 30-50 m. Alternatively there may be fine
sands to fine muds near the shelf edge. There does not appear to be active
exchange of sediment between the medium beach sands that comprise the majority
of shoals associated with the outer parts of inlets and the inner shelf fine
sand facies. However the situation is very complicated and the pattern varies
on different parts of the coast. For instance, the north coast of New South
Wales is a highly dynamic, sandy littoral coast with fairly high 1ittoral drift
rates. Whereas the south coast is far more pocketed with less drift. Changes
in ocean current patterns and bathymetry between the two areas combine to make

the offshore sediment facies different.

Conclusions

1 Across-shelf sediment transport appears to be an important mechanism for
supplying sand to the littoral zone to nourish beaches and inlet bar
systems.

2 This appears to be particularly true on coasts of low longshore drift.

3 Further research is necessary to investigate the processes in more detail.

THE ROLE OF EXTREME EVENTS

1. J. Hinwood reported a project of the National Committee on Coastal and Ocean
Engineering (Australia) that ran for about four years. The scheme was set up to
produce reports on extreme events, and to define a few typical events. For
instance a storm on a catchment that drained to an estuary, and was accompanied
by strong winds producing waves and surge on the coast. While not specific to

tidal inlets they contain information on inlet response to such events.

The Committee identified a Government department, usually as a lead agency, to
gather data and to contact organisations beforehand to determine their general
willingness to assist. Immediately following the event, a member of the
National Committee and one or two staff members from the lead organisation
attempted to assemble all the relevant information. This information included
meteorology, stream gaugings, actual site observations and hydrographs. They
also attempted to get into the field to assess the damage and other storm
effects of an engineering interest that had occurred and would not otherwise

have been recorded.

It proved fairly onerous, for an essentially volunteer operation. The

organisations backing it had some difficulty in tying it to a specific project
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for costing and budgeting purposes, which is perhaps the reason the project
lapsed. It did result in half a dozen reports on extreme events that are quite
useful. Several reports were produced and are lodged with the Institute of
Engineers (Australia) Library. There were only a few copies of each report
produced; copies could be obtained by contacting the Institute of Engineers
Library in Canberra. These reports are also held in the library of the Water

Research Laboratory at the University of New South Wales.

2. Floods, as distinct from storms, can also have a very significant impact in
modifying the inlet entrance shoals by dumping large quantities of sand on the
seaward face over a few days. This rapid advance is followed by slow shoreward
migration of the sand under tidal action over 12-18 months or more. Because
shoal formation, rather than gorge depth, is a major consideration from the
navigation standpoint it is important to research and model shoal geometry and

the response to extreme events.

It was noted that changes in inlet throat profile tend to manifest themselves
more as a deepening rather than a widening when scour is predominant.
Conversely, large amounts of sediment from catchment erosion, can be dumped in

the throat restricting navigation, necessitating dredging.

3. Tsunamis, storm surge and wave set-up were identified as 'floods' of marine
origin that could enter inlets generating extreme water levels, resulting in
significant increase in tidal currents and sediment transport. Tsunamis in
particular, although rare events, present extreme conditions in shallow
estuaries with a large expanse of tidal flats. For instance a tsunami of about
5 m in Tauranga Harbour (New Zealand) would result in an increase in tidal prism
of 300-400%. On the Australian and New Zealand east coasts storm surge and wave
set-up is common but generally less than 0.5 m. No-one could report knowledge
of field measurements on the topic, however theoretical calculations were

possible, and it was considered to be a poorly appreciated effect.

It was pointed out that phenomena that cause an increase in water velocity are
1ikely to have an enormous effect on sediment transport because sediment
transport increases as the 3rd-6th power of current velocity (depending which
formula is used). Other accompanying effects include salinity intrusion which

can markedly influence sedimentation patterns in an estuary.

Conclusions

1 Most workers intuitively recognise the important role of extreme events,
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such as floods, storms and tsunamis, on inlet stability.

2 Documenting the hydraulic and sedimentological affects of such events has
proved extremely difficult.

3 Documentation of case studies and eventually modelling inlet response to
events, and subsequent recovery under normal tidal regime is an important

area for future research.

ESTUARY MANAGEMENT AND THE EFFECTS OF ENGINEERING WORKS

1. One of the primary management concerns is that inlets remain as navigable
waterways and be unaffected by engineering works, particularly in the shallow
flood and ebb tide shoal area. This is of paramount importance rather than
gorge depth. A1l are part of the inlet system. Several case histories were

described to demonstrate the possible effects of engineering works on the inlet.

Prof. Gerritsen described large scale dredging that was undertaken at the
entrance of the Western Scheldt, the entrance to the Port of Antwerp. Large
quantities of sand were removed from the delta, and the effects were very clear
on the inner delta and the estuary. By changing the depth of the delta, the

whole of the estuary, as well as the inner delta, was affected.

Another good example is the development of the Dutch Rotterdam Waterway, the
waterway between Rotterdam and the North Sea. In the period from 1906-1956 the
waterway was doubled in size and in tidal prism, partly because of dredging
operations, but also partly because after dredging the river lost its natural
stability and started to deepen naturally. The examples demonstrate that one
has to be careful, because it is easy to displace the equilibrium situation by
carrying out dredging or training works in the estuary.

A comprehensive study was made of the effect of dredging in the Tweed River (New
South Wales) some years ago, which is reported in the 1980 Proceedings of the
International Coastal Engineering Conference. One million cubic metres of sand
was taken out of the lower reaches of the Tweed River (the marine wedge, or the
part that is the equivalent of the flood delta area) to nourish the updrift
Kirra Beach. The net result of these estuary works was a dramatic increase in
the net littoral feed into the estuary, and the entrance bar growth. In some
respects, by taking the inlet sand to nourish Kirra Beach, if it is accepted
that there was a littoral drift deficit, the operation 'robbed Peter to pay

Paul'. The ultimate bypassing of the Tweed breakwater, which is now believed to
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be taking place, was deferred for some eight to nine years because of the impact

of this dredging on the estuary.

Some engineering works have little effect on tidal inlet stability. As part of
0il refinery terminal expansions at Whangarei Harbour, the Northland Harbour
Board dredged the shipping channel through the ebb-tidal delta. Since then the
ebb-tidal delta and shipping channel have been exceptionally stable, and has
required no maintenance dredging in about 20 years. Reasons for this are that
part of the dredge cut was through soft sandstone rather than mobile sands. But
more importantly there is a very Tow sediment budget in the harbour and a very
high biological productivity, so that there are tremendous numbers of bivalve

shells which form a channel lag deposit and make it very stable.

2. T. Hume emphasised the important role of biological material in stabilising
an inlet, but that this role is poorly understood and often unrecognised. In
Whangarei Harbour shell material armours and stabilises the inlet. The estuary
is the location of growing commercial exploitation of shellfish for the local
and overseas markets. The management problem is to define the quota of
shellfish for harvest when shellfish provide an important source of material for
stabilising the inlet throat. Furthermore there is the problem of the o1l
refinery on the sand spit at the inlet throat. A major chemical spill from the
refinery could kill off large numbers of shellfish, producing a large supply of
shell material to the inlet. But what would be the long term supply? Inlet
stability in this case is closely linked with biological productivity, making
the situation very complex. W. de Lange made the point that densely packed beds
of live shell fish can also provide a stabilising influence. Manzenrieder
describes these phenomena (Appendix III).

3. MWays of predicting the effects of engineering work on the inlet system have
been described in the background paper and were addressed at the workshop. In

particular those changes that occur over shallow inlet bar systems.

The simplest means of prediction is by extrapolating case history data from one
inlet to another. Good monitoring of the effects of engineering works 1is
essential to facilitate this. The development of conceptual models , from

aerial photograph and bathymetric data, of inlet morphometric changes 1in

response to natural events and engineering works is another approach. Another

way is by full hydrodynamic analysis of the situation by making tidal
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calculations, coupled with sediment transport equations. These, of course, have

some limitations because of the lack of accurate knowledge about the

sedimentation processes (see Gerritsen, Appendix III).

Another approach is by using empirical equations (see background paper) 1in
conjunction with a hydraulic or numerical model. 1In this way one can actually
model the general physical processes by incorporating the flow/cross-section
dimension relationships determined for a particular area. By way of example, a
study of 135 estuaries in New South Wales (about 1/3 of those were trained)
looked at the relationship between gorge areas and depth over the entrance bar,
i.e. the ruling depth which a mariner negotiates.. A workable relationship was
found, using plots, similar to those for area-prism, in terms of the depth in
the gorge and the depth on the bar. The ruling depth on the bar was about half
the depth in the gorge, based on spring tide flows.

Conclusions

1 Poorly planned engineering works such as dredging, reclamations and jetties
can have a significant effect on inlet stability.

2 Conceptual and simple empirical models provide a ready means of assessing
the likely impacts.

3  These are best used in conjunction with more sophisticated numerical and
physical models.

4 Further research is needed to understand and quantify the physical
processes,

CONCLUDING REMARKS (Prof. F Gerritsen)

I would 1ike to address a few questions that were mentioned, just to give my

viewpoint on some of these areas of interest. We have been talking about
different solutions of the tidal inlet problem. I think they can be categorised
as three basic approaches, as I mentioned in my (keynote) speech. There is the
empirical approach which so far has given us the most support, because it gives
some solid data. Then there is the semi-empirical or semi-theoretical approach
in which we combine theoretical approaches with some physical data. Then, of

course, there 1is the third approach, the hydrodynamic approach, that Dr Healy
wanted to see developed.

I think that this is what we would all 1like to see, and that is the way we

should go. I think we have to move toward a direction in which we try to define
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a stability problem as a hydrodynamic problem; where we have the effect of the
closure on the tide, and the effect of the tide on the closure of the inlet and
the stability, as well as the diameter of the sediment, and the equations of

motion for the fluid and the sediment. They are all taken into account to
arrive at the solution, which is the basic equilibrium condition.

I think we all realise that this is the goal toward which we should aim. We are
stil1 far from that solution. We have seen from our discussions here that the
problem is very complex, and that there are different ways of looking at it from

different points of view.

In the discussion, the relationship between tidal prism and inlet cross-
sectional area was emphasised. In a recent study that we did in Holland

for the Western Scheldt, we have looked at some other parameters like the
maximum tidal flow, the maximum currents and the stability shear stress on the
equilibrium profile. We feel that the tidal prism is a good measure, but there
is also the maximum flow which is an equally good measure of stability, and can

be used in certain conditions.

The semi-empirical approach gives the advantage in combining some theoretical
work with some empirical work and I think the solution in which we use the
stability shear stress has some advantages, because there again some theoretical
aspects come into play like the Chezy coefficient, the diameter of the
particles and some other elements of interest, the depth of flow for instance.
They are all components of stability shear stress, and therefore affect the
stability equation. We have also shown that by using, for instance, the Bijker
formula, calculating transport from the combined effect of waves and currents,
one can actually modify the stability shear stress for areas outside of the
gorge, which are heavily affected by waves and in doing so, one can actually
include areas heavily affected by waves into the stability equation, in the same
way as we do for inlet gorges.

We also found that for the inner delta, the channels of the inner delta also

behave very nicely in terms of statistical relationships.

In terms of the maximum velocity, we found that it might not be as good a
measure as we had hoped it would be. We found, for instance, that the mean
velocity over a tidal cycle is in some ways a better representation, and we

found a very strong relationship between the mean velocity and the hydraulic
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radius or depth of the channel, as a stability measure. That, of course, is
also related to the diameter of the particles and to certain conditions that

may not always remain the same.

Thank you for the opportunity to address the closing of this workshop.
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APPENDIX II
TIDAL INLET STABILITY:

A BIBLIOGRAPHY 1975-1985

C E Herdendorf, T M Hume and J H Burton

Water Quality Centre
Ministry of Works and Development

Hamilton

The purpose of this bibliography is to bring together a list of references
dealing with tidal inlet stability. There is a wealth of information on this

subject in the scientific and engineering literature.

LISTING PROCEDURE
The bibliography contains :

1 A section of 32 pre-1975 publications on tidal inlets, considered "classics"
on this subject by the compilers of this bibliography and,
2 Important 1975-1985 overseas publications, combined with a more exhaustive

Tist of New Zealand works on this and related topics.

In both Tists the references are set out in alphabetical order and

chronologically by author. The references are also listed, by number, to
facilitate a subject index at the end of the listings.

ASSESSMENT
An assessment of recent directions in tidal inlet research was attempted by

analysing publication trends in this field for the past 10 years. Several types
of scientific literature were canvassed, including :

1 Books;
Journal articles;
Conference proceedings;

2
3
4 Agency and consultation reports, and
5 University theses.
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Because of our own particular needs and library resources, the literature search
was biased toward New Zealand. Available literature was assembled and

categorised based on the research emphasis into the following 11 topics

Descriptive investigations.

Case studies (natural situations).

Case studies (engineering assessments).
Process studies (hydrology).

Process studies (sedimentology).
Process studies (biology).

Empirical methods.

Numerical models.

Physical models.

- O O ~N O O m W N =

0 Engineering or management applications.

11 Comprehensive or synthesis reviews.

Books

In the past decade no less than 25 books have been published which deal
exclusively with tidal inlets or have major chapters devoted to this topic. A
few of these are regional in nature, but most utilise information from a wide

spectrum, of geographic settings.

Scientific Journals

Preliminary review of the literature indicates that normally between 20-25
relevant papers are produced annually by researchers working on inlet stability
problems. Papers dealing with various aspects of tidal inlet stability have
appeared in at least 24 scientific journals. The following is a list of the 10
main journals (ranked by frequency) in which articles on this topic were

published between 1975 to 1985:

Journal of Waterways, Ports, Coastal and Ocean Engineering (supersedes Journal
of Waterways, Ports, Coastal and Ocean Division, ASCE)

Marine Geology

Estuarine, Coastal and Shelf Science (supersedes Estuarine and Coastal Marine
Science)

New Zealand Journal of Marine and Freshwater Research

Journal of Sedimentary Petrology

Sedimentology
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Sedimentary Geology
Shore and Beach
Coastal Engineering

Journal of Physical Oceanography

Conference Proceedings

Several conferences have been held which featured sessions on tidal inlets. The
Coastal Engineering Conferences (normally held every two years) of the American
Society of Civil Engineers are the most noteworthy along with several specialty
symposia organised by the Waterways, Ports, Coastal and Ocean Division of the
same society. A high percentage of the papers presented at these meetings deal
with engineering case studies and applications. Because the meetings have been
held at cities throughout the world, the proceedings have a wide geographic

representation.

Agency and Consultation Reports

Agency and consultation reports are often among the most difficult to obtain,
but can be very useful from a practical application point of view. The US Army
Corps of Engineers, Coastal Engineering Research Center (Virginia) and Waterways
Experiment Station (Mississippi) are exceptions in that their reports are
distributed widely. In New Zealand, the Ministry of Works and Development and
the New Zealand Oceanographic Institute are the leading agencies in publishing

reports on various aspects of tidal inlet stability.

University Theses

In New Zealand, the bulk of research on tidal inlet stability has been
undertaken as part of university research, notably by the Earth Sciences
Department of Waikato University. To date the work has been descriptive and
largely part of broader estuary research that has been undertaken on an estuary-

by-estuary basis.

CONCLUSIONS

Table A.1 presents the percent frequency in which eleven common research topics
of tidal inlet stability have appeared in books, journals, conference
proceedings, agency reports, and theses over the past ten years. Descriptive
investigations and case studies of natural situations provide 42%, while case
studies of engineering works and applications add another 16%. Process

research on sedimentology and hydrology of tidal inlets account for nearly 30%



51

of publication record. Empirical methods and numerical models result in 7% and
comprehensive reviews are 3%. Together biological process studies and physical
model investigations account for less than 2% of the publications. Books tend
to be more heavily weighted toward synthesis reviews and applications while
journals are strongest in process research. Conference proceedings and agency
reports emphasise the engineering aspects, while theses are a mixture of

descriptive and process research.
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DISTRIBUTION OF RESEARCH TOPICS ON TIDAL INLET STABILITY PUBLISHED IN

VARIOUS FORMS 1975-1985

RESEARCH TOPICS

BOOKS JOURNALS PROCEEDINGS REPORTS THESES TOTAL*

1 Descriptive
investigations
2 Case studies

(Natural situations)

3 Case studies (Engin-
eering assessments)

4 Process studies
(Hydrology)

5 Process studies
(Sedimentology)

6 Process studies
(Biology)

7 Empirical methods

8 Numerical models

9 Physical models

10 Engineering or

management applications 9.

11 Comprehensive or
synthesis reviews

18.

14.

11

117.

6%

8%

.3%

1%

6%

. 9%
3%
. 9%
. 9%

3%

. 3%

24.

29.

11

17.

8%

2%

.8%

.6%

6%

.0%

.49%
. 8%
. 6%

. 0%

. 2%

18.

27.

10.

13

14.

3.

9%

0%

0%

.9%

. 0%

.2%
1%
4%
. 6%

2%

0%

12.

15.

16.

17.

13

3%

3%

.2%

3%

3%

.0%
1%
1%
.0%

. 3%

1%

20.

23.

18

23.

3%

%

.T%

L1%

%

4%
. 0%
N
. 0%

. 8%

. 0%
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59.

18

32

45.

14

23.

.T%

5%

. 3%

.3%

1%

. T%
. 8%
. 3%
.T%

T%

. 6%

*Some publications are listed under more than one topic
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