Length and age composition of the commercial catch of blue moki (Latridopsis ciliaris) in MOK 1 during the 2004-05 and 2005-06 fishing years, including total and fishing mortality estimates

M. J. Manning ${ }^{1}$
M. L. Stevenson ${ }^{2}$
C. M. Dick ${ }^{1}$
${ }^{1}$ NIWA
Private Bag 14901
Wellington 6241
${ }^{2}$ Corresponding author
NIWA
P O Box 893
Nelson 7040

Published by Ministry of Fisheries
 Wellington
 2010

ISSN 1175-1584 (print)
ISSN 1179-5352 (online)

©
Ministry of Fisheries
2010

Manning, M.J.; Stevenson, M.L.; Dick, C.M. (2010).
Length and age composition of the commercial catch of blue moki (Latridopsis ciliaris)
in MOK 1 during the 2004-05 and 2005-06 fishing years,
including total and fishing mortality estimates.
.New Zealand Fisheries Assessment Report 2010/34.

EXECUTIVE SUMMARY

Manning, M.J; Stevenson, M.L.; Dick, C.M. (2010). Length and age composition of the commercial catch of blue moki (Latridopsis ciliaris) in MOK 1 during the 2004-05 and 2005-06 fishing years, including total and fishing mortality estimates. New Zealand Fisheries Assessment Report 2010/34.

This report presents the results of a two-year market sampling programme on the blue moki catch in the target tarakihi bottom-trawl (BT-TAR) fishery and the target-moki setnet (SN-MOK) fishery operating off the east coast of the North Island during the 2004-05 and 2005-06 fishing years. This work was funded by the Ministry of Fisheries ("To monitor and assess the blue moki fishery in MOK 1"), Specific Objectives 1 ("To conduct sampling to determine the length and age structure of the commercial targeted setnet catch of blue moki in MOK 1"), 2 ("To conduct sampling to determine the length and age structure of blue moki caught by commercial trawlers targeting tarakihi in MOK $1 "$), and 3 ("To estimate fishing mortality of the adult MOK 1 stock"). Implementation of the sampling programme was subcontracted to the Area Two Inshore Finfish Management Company Ltd (ATIFMC).

The aim of the market sampling was to sample the age composition of both fisheries throughout both fishing years in order to produce suitable fishery catch-at-age distributions from which total and fishing mortality estimates could be calculated. The spatial extent of the sampling programme was restricted to that part of the MOK 1 fishstock on the east coast of the North Island (ECNI; New Zealand Fisheries Management Area 2 or "Central East" encompassing New Zealand fisheries statistical areas $011-019$) as this matched the scope of earlier standardised catch-per-unit-effort analyses of both fisheries and the catch in the BT-TAR and SN-MOK fisheries in this area historically accounts for about half of the total MOK 1 catch per fishing year on average. Sampling effort was allocated to the three major ports on the ECNI (Gisborne, Napier, and Wellington) by month proportionally to historic trends in catch in the fishery by these factors. A so-called "direct-age" design was used, where sagittal otolith pairs from individual fish were sampled randomly from each fishery and scaled up to stratum totals in the analysis without using intermediate age-length keys. Variance targets of mean-weighted coefficients of variation of 30% were set for each fishery catch-at-age during each fishing year.

Targets of 50 sampled landings were set for both fishing years (BT-TAR: 30 landings; SN-MOK: 20 landings). Totals of 32 (2004-05) and 25 (2005-06) landings were sampled, with mean weighted c.v.s of $25-63 \%$ for the length frequencies and $23-60 \%$ for the age frequencies. Reasons for the failure by the ATIFMC to meet the sampling targets are discussed. However, the sampled catches accounted for 20% of the total combined catch of the BT-TAR and SN-MOK fisheries during 2004-05 and 10\% during 2005-06. The sample data collected are thought to be generally representative of the fishing effort and catches in both fisheries during both fishing years, although some particular discrepancies are noted. The catches-at-age in both fisheries appear to consist of fish exceeding 40 years of age, but most fish present are between 4 and 12 years of age. There was some evidence of differential yearclass success, with some evidence of abnormally strong 1984 and 1985 year classes persisting in the catch and a strong 1999 year class entering the catch. A revised natural mortality estimate of $0.10 \mathrm{y}^{-1}$ was calculated.

Total mortality estimates were calculated separately for both fisheries during both fishing years assuming ages at full recruitment to each fishery of between 4 and 12 years. Fishing mortality estimates of 0.06 and $0.08 \mathrm{y}^{-1}$ for the BT-TAR and SN-MOK fisheries respectively during 2004-05 and $0.03 \mathrm{y}^{-1}$ for both fisheries, during 2005-06 assuming age at full vulnerability of 8 years were calculated from these results. A classical Beverton-Holt yield-per-recruit analysis was carried out to produce reference fishing mortality values to compare the observed fishing mortality estimates. With which comparison of the observed fishing mortality estimates with the yield-per-recruit reference values ($F_{0.1}$ and $F_{\max }$) suggested that the stock that supports the BT-TAR and SN-MOK fisheries off
the ECNI was not being overfished, regardless of the age at full vulnerability assumed in the reference point calculations and the age-at-full-recruitment assumed in the total mortality calculations and thus in the fishing mortality estimates. Theoretical shortcomings in the yield-per-recruit analysis and their implications for the conclusions drawn are discussed. Some recommendations for future blue moki market sampling are also discussed.

1. INTRODUCTION

Blue moki (Latridopsis ciliaris) is a moderate-sized demersal teleost distributed widely in the New Zealand region. It is found in depths from 10 m to about 200 m on the continental shelf around the North, South, and Chatham Islands (Anderson et al. 1998). It reaches lengths of about 80 cm from the tip of the snout to the caudal fork and about 8 kg in weight (Ministry of Fisheries Science Group 2007).

Commercial fisheries for blue moki in New Zealand waters are relatively small and are concentrated around the east coasts of the North and South Islands. Total annual reported commercial landings have ranged between 164 and 551 t and have averaged 427 t since the full implementation of the Quota Management System (QMS) at the start of the 1986-87 fishing year (1 October 1986 to 30 September 1987). Since then, blue moki in New Zealand waters have been managed as five separate Quota Management Areas (QMAs) or "Fishstocks": MOK 1, 3, 4, 5, and 10 (Figure 1). Fishstock catches and TACCs are given in Table 1, (Figure2). Fishstock MOK 1, which encompasses the east and west coasts of the North Island and west coast of the South Island, accounts for most (roughly 40% in any given fishing year) of the catch. Total annual reported commercial landings in MOK 1 have ranged between 109 t and 469 t and average 340 t .

1.1 Summary of available information

There is little information available on the biology and ecology of blue moki relevant to their fisheries management in New Zealand. Species identity was confirmed by Smith et al. (2001, 2003). Aspects of age and growth and sexual maturity of blue moki off the east coast of the South Island were investigated by Francis (1981a). Francis (1981b) found evidence of a spawning migration that begins off Kaikoura on the East Coast of the South Island in about May to June, travels north along the east coasts of the South and North Islands, reaches Gisborne to spawn off Gisborne and East Cape in about August to September, before passing Kaikoura again in about October. The spawning ground off Gisborne and East Cape is also the only known spawning ground in the New Zealand region. As well as the commercial fishery, recreational and customary fisheries also exist, and blue moki is of particular cultural importance to Cape Runaway Maori (Ministry of Fisheries Science Group 2007). However, the available recreational harvest estimates are thought to be biased and there are no quantitative estimates of the amount of customary catch available at this time (Ministry of Fisheries Science Group 2007).

Langley \& Walker (2004) carried out a characterisation and catch-per-unit-effort (CPUE) standardisation analysis of the commercial fisheries in MOK 1. They found that most of the catch was caught in four main seasonal fisheries: the target tarakihi bottom-trawl fishery ("BT-TAR"); statistical areas 012-016; September-November and March-July), the target blue moki setnet fishery ("SNMOK"; statistical areas 013-015; May-October), the target blue warehou setnet fishery ("SN-WAR"; statistical area 014; May-October), and the target tarakihi setnet fishery ("SN-TAR"; statistical area 018; April-June). They noted that there were no data on the size and age composition of fish in each of the four main fisheries and recommended that catch-sampling be undertaken to determine their composition. They also found that the setnet CPUE series, in particular the target blue moki component, were the most promising candidates for future monitoring of the fishery, but because of the poor quality of the data collected up to the end of the 2001-02 fishing year, suggested that the current trends were not thought to track abundance. Although the recently revised setnet catch and effort data form may provide data of sufficient quality to monitor relative abundance in the fishery in the future, the Ministry of Fisheries therefore currently has no information on the status of the stock, or whether current rates of exploitation will allow the stock biomass to move towards a level that can support the maximum sustainable yield.

Figure 1: Blue moki Quota Management Areas (QMAs). Blue moki in the New Zealand EEZ is managed as eight separate fishstocks. The QMAs do not necessarily contain individual biological stock units or populations.

Figure 2: The reported blue moki catch by fishstock and fishing year, 1986-87 to 2005-06 (Table 1). The MOK 1 catch dominates the total, with a smaller contribution from MOK 3. Catches in the other QMAs are negligible. The total TACC for all fishstocks is overlaid.

Table 1:
The total reported landed blue moki catch by fishing year and QMA (Ministry of Fisheries Science Group 2007). All data are New Zealand QMS data (1986-87 to 2006-07).

	MOK 1		MOK 3		MOK 4		MOK 5		MOK 10		All QMAs	
Fishing year	Catch	TACC										
1986-87	109	130	52	60	-	20	3	40	-	10	164	260
1987-88	183	142	95	62	-	20	2	40	-	10	280	274
1988-89	134	151	121	64	-	20	3	40	-	10	258	285
1989-90	202	156	89	65	11	25	1	43	-	10	303	299
1990-91	264	157	93	71	1	25	2	43	-	10	360	306
1991-92	285	157	66	71	2	25	2	43	-	10	355	306
1992-93	289	157	94	122	1	25	4	43	-	10	388	358
1993-94	374	200	102	126	4	25	5	43	-	10	485	404
1994-95	418	200	90	126	<1	25	3	43	-	10	511	404
1995-96	435	400	91	126	1	25	3	43	-	10	530	604
1996-97	408	400	66	126	2	25	3	43	-	10	479	604
1997-98	416	400	78	126	3	25	2	43	-	10	500	604
1998-99	468	400	78	126	<1	25	4	43	-	10	551	604
1999-00	381	400	56	126	1	25	5	43	-	10	443	604
2000-01	420	400	67	126	5	25	6	43	-	10	499	604
2001-02	365	403	77	127	8	25	2	44	-	10	451	609
2002-03	380	403	87	127	2	25	6	44	-	10	475	609
2003-04	372	403	60	127	2	25	6	44	-	10	440	609
2004-05	418	403	70	127	3	25	11	44	-	10	502	609
2005-06	408	403	69	127	1	25	5	44	-	10	483	609
2006-07	402	403	90	127	<1	25	11	44	-	10	504	609

1.2 Aim of this study

This report presents the results of a two-year market sampling programme to begin to address the need for further information on the composition of the main fisheries in MOK 1. The aim of the programme was to sample catches in the target moki setnet ($\mathrm{SN}-\mathrm{MOK} \mathrm{)} \mathrm{and} \mathrm{target} \mathrm{tarakihi} \mathrm{bottom} \mathrm{trawl} \mathrm{fisheries} \mathrm{on}$ the east coast of the North Island in MOK 1 during the 2004-05 and 2005-06 fishing years. A target mean-weighted coefficient of variation (c.v.) of 30% averaged over all age classes was set for the fishery catch-at-age distributions. Mortality estimates derived using catch-curve methods are also presented and are considered within the context of a deterministic per-recruit analysis. This work was funded by the New Zealand Ministry of Fisheries as research project MOK2003/01 ("Monitoring the blue moki fishery in MOK 1"). This report addresses Specific Objectives 1, 2, and 3 of that project.

2. METHODS

2.1 The spatial and temporal extent of the sampling programme

The spatial extent of the sampling programme was limited to that part of the MOK 1 fishstock on the east coast of the North Island (ECNI; New Zealand Fisheries Management Area 2 or "Central East) encompassing New Zealand fisheries statistical areas $011-019$ and 201-206. Over 80% of the total MOK 1 catch is caught by setnet and bottom trawl vessels operating in this area. Catches in the BTTAR and SN-MOK fisheries in this area in particular are well defined in both time and space.

Langley \& Walker (2004) found that catches in the blue moki target setnet fishery (SN-MOK) on the ECNI accounted for about 25% of the total estimated blue moki catch in their dataset. Of this catch, they found that about 78% was caught in statistical areas $013-015$, and that over 81% was caught in the six months from 1 May to 31 October. They also found that the catch in the tarakihi target setnet fishery (BT-TAR) off the ECNI accounted for about 22% of the total estimated catch in their dataset, with most of this catch (92%) caught in statistical areas $012-016$, but that there were two seasonal peaks in this catch between March and July and between September and November.

We decided to further restrict our sampling effort to the BT-TAR and SN-MOK fisheries off the ECNI. By restricting sampling effort to these two fisheries, we expected to be able to sample a usefully large proportion of the total expected MOK 1 catch during the 2004-05 and 2005-06 fishing years, without needing to extend our sampling effort over the full spatial extent of this very large fishstock. A further advantage is that our sampling would also then be consistent with the definitions of the standardised CPUE indices developed by Langley \& Walker (2004) for these two fisheries. Although the SN-MOK catch is highly seasonal, suggesting that our sampling effort could be restricted to some fraction of the fishing year, given the reduced seasonality in the BT-TAR fishery and that some Licensed Fish Receivers (LFRs) along the ECNI receive catch from both fisheries, suggested to us that sampling should be carried out throughout all 12 months of the 2004-05 and 2005-06 fishing years to allow optimal sampling designs for both fisheries to be developed that could be managed simultaneously.

We refer to that part of the MOK 1 fishstock on the ECNI as "MOK 1(E)" elsewhere in this report.

2.2 Sample design

2.2.1 Method

Proportions at age in New Zealand fisheries are usually estimated using one of three methods (Francis 2002):
(i) by collecting length-frequency data from the catch and using a modal separation program such as MIX to decompose the length-frequency distribution into an age-frequency distribution (the "indirect length-frequency" approach);
(ii) by collecting both a large sample of length-frequency data and a small sample of otoliths from the catch to generate an "age-length" key to transform the length-frequency distribution to an age-frequency distribution (the "indirect age-length key" approach); or
(iii) by collecting representative samples of otoliths and estimating the catch-at-age directly from the age-frequency distribution derived from the otoliths collected (the "direct-age estimation" approach).

The first is of little use for blue moki given their moderate longevity (at least 33 years) (Francis 1981a). The second is likely to be difficult to apply to the MOK 1(E) stock given the temporal distribution of the catch, fish growth, and probable migrations through the stock area within a given fishing year. Although there is a distinct seasonal peak in the SN-MOK catch over May to October, catch in the BT-TAR fishery is more spread out, with peaks in March to July and September to November. These fisheries are also exploiting the probable movement of fish northwards along the east coast of the South and North Islands to East Cape as part of the spawning migration identified by Francis (1981b).

The main advantage of method two is low cost: large numbers of fish can be measured relatively cheaply and the relatively more expensive age estimation component is restricted to relatively few fish. However, the cost advantage is reduced or lost when multiple age-length keys are needed. The number of agelength keys that would be required for MOK $1(\mathrm{E})$ is unclear, although it is probably at least four: separate spawning and non-spawning keys each for males and females along the east coast of the North Island. Each key needs to be derived from sufficient otoliths to define the length-at-age relationship with species with more than 30 year-classes in the catch, requiring considerable sampling effort. On balance, the third method, the direct-age estimation approach, appeared most appropriate for the MOK 1(E) fishstock and was selected.

2.2.2 Sampling effort allocation

To facilitate sampling effort allocation, all associated landing and fishing event records for all fishing trips from 1 October 1989 to 30 September 2004 where at least one non-zero landing event in MOK 1 was recorded were extracted from the MFish catch-effort and landings database warehou (Duckworth 2002). These data were then merged using the restratification and landed catch allocation algorithm described by Manning et al. (2004). Given the ablative nature of this procedure, the groomed and merged catch in each fishing year was rescaled to be equal to the corresponding QMR catch (Table 1).

The groomed and merged landed catch is plotted by fishery, month of landing, and fishing year in Figure 3. The catch is plotted by fishery, month, and reported place of landing in Figure 4. Trends similar to those identified by Langley \& Walker (2004) in their analysis of estimated catch are apparent: the SN-MOK landed catch is highly seasonal and landed in relatively few places on the east coast of the North Island, namely Gisborne, Napier, and Ngawi, although Pourerere Beach and Wellington are also important. Catches in the BT-TAR fishery are less seasonal, with most of the catch in this fishery also landed in Gisborne, Napier, and Wellington; fish landed Ngawi and Pourerere Beach are probably transported to Wellington and Napier, respectively, for processing. Gisborne (30\%), the Napier region (including Pourerere Beach; 24\%), and the Wellington region (including Ngawi; 33\%) account for 87\% of the catch (Figure 5). Eighty-two percent of the MOK 1 catch is landed in the six months between 1 June and 30 November (Figure 3).

The catch is plotted by fishery, statistical area actually fished, and port of landing in Figure 6. There are some not unexpected associations between certain statistical areas fished and ports of landing although some overlap is also apparent. Catches unloaded in Gisborne are typically caught in statistical area 013, with a smaller contribution from statistical area 012. Catches unloaded in Napier are typically reported as caught in areas 013 and 014, but catches unloaded in Wellington (including those catches landed at Ngawi) are typically reported as caught in areas 015 and 016 . These results suggest that port of landing may be a reasonably effective alias for the statistical areas actually fished during a given fishing trip (for these fisheries off the ECNI at least). Landings are also typically small, with most (97%) of all landings weighing 1 t or less (Figure 6). Further descriptions of the fishery are given in Section 3.

From these trends in catch, we decided to stratify our sampling effort by three-month divisions of the fishing year that seem to coincide reasonably well with the known peaks in catch in the SN-MOK and BT-TAR fisheries, and by the major ports of landing, north to south, along the ECNI. However, the optimal number of landings to sample and effort allocation scheme could not be evaluated quantitatively before this programme began. There are few available published data on the length and age composition of the MOK 1 catch, and what data are available, such as those presented by Francis (1981b), do not lend themselves to a quantitative evaluation of an optimal sampling design; the data have not been loaded to the market research database and are not in a form that would allow them to be easily processed and loaded to this or any other database (M. Francis, pers. comm.). But given that Blackwell \& Gilbert (2002), using a direct-age sampling design, observed mean-weighted c.v.s of 27% and 25% for the snapper (Pagrus auratus) trawl fishery catch-at-age in SNA 7 during the 1999-2000 and 200001 fishing years after sampling 60 and 56 landings respectively, and given the crude similarities between this species and fishery and the BT-TAR and SN-MOK fisheries off the ECSNI, we decided to sample a similar number of landings. We set a target of 50 landings, 30 for the BT-TAR fishery and 20 for the SN-MOK fishery during each of the 2004-05 and 2005-06 fishing years, with the landings assigned to the season-port of landing sampling strata proportionally to the historic distribution of catch in these fisheries by these factors. Allocated sampling effort is given in Table 2.

Figure 4：The distribution of the catch in the groomed and merged catch－

The distribution of the catch in the groomed and merged catch－

Figure 5:

Table 2: Sample allocation by sampling stratum: (i) gives the distribution of all groomed landed catches from the 1989-90 to 2002-03 fishing years in the target blue moki setnet (SNMOK) and target tarakihi fisheries (BT-TAR) by stratum; (ii) gives the catch by stratum as proportions-by-weight (t); and (iii) gives the provisional sample allocation by stratum.
(i) Groomed landed catch by stratum (t):

			Season	Total	
	"Spring"	"Summer" (Jan-Feb-Mar)	"Autumn" (Apr-May-Jun)	"Winter" (Jul-Aug-Sep)	
Fishery	(Oct-Nov-Dec)				
BT-TAR	719	340	349	443	1850
SN-MOK	163	77	259	670	1169
Total	882	417	608	1113	3020

(ii) Groomed landed catch by stratum (proportions):

| | Season | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | Total

(iii) Sample allocation by stratum ("Napier" includes fish landed in Pourerere Beach and transported to Napier for processing; "Wellington" includes fish landed in Ngawi and Paremata and transported to Wellington for processing):

Fishery	Port				Season	Total
		$\begin{gathered} \text { "Spring" } \\ \text { (Oct-Nov-Dec) } \end{gathered}$	"Summer" (Jan-Feb-Mar)	$\begin{array}{r} \text { "Autumn" } \\ \text { (Apr-May-Jun) } \end{array}$	$\begin{gathered} \text { "Winter" } \\ \text { (Jul-Aug-Sep) } \end{gathered}$	
BT-TAR	Gisborne	5	2	2	3	12
	Napier	3	1	1	2	7
	Wellington	4	2	2	3	11
	Total	12	5	5	8	30
SN-MOK	Gisborne	1	1	2	3	7
	Napier	1	1	1	3	6
	Wellington	1	1	2	3	7
	Total	3	3	5	9	20
Total	Total	15	8	10	17	50

A typical result in market sampling programmes is that there is usually (much) more variation in fish size and other quantities between rather than within landings. More precision in the observations of these quantities can usually be obtained by sampling fewer fish from many landings than by sampling many fish from a few landings. To account for this, we decided to sample a target of 50 landings, 25 per fishery, per fishing year. We proposed to randomly sample 25 sagittal otolith pairs from landings over 1000 kg or lighter and 50 sagittal otolith pairs from landings heavier than 1000 kg . As most MOK 1 landings are 1000 kg or less, we expected to collect somewhere around 1250 to 1500 otolith pairs across both fisheries per fishing year, of which we proposed to prepare and read 1000 individual otoliths per year. Collecting more otoliths than we proposed to prepare and read would give us the ability to poststratify the otoliths collected to control sources of variation in the catch or other factors that were unknown when the sampling scheme was designed but may be shown later to be important.

2.2.3 Management of sampling operations

Implementation of the sampling programme was subcontracted by NIWA to the Area Two Inshore Finfish Management Ltd (ATIFMC). ATIFMC is the seafood industry stakeholder organisation that represents the interests of commercial fishers and quota owners in the Central East (FMA 2) fisheries management area. LFRs likely to receive large amounts of the MOK 1 catch during the 2004-05 and 2005-06 fishing years were identified using Quota Share Register reports (http://www.fishserve.co.nz) and their participation in the sampling programme was sought by ATIFMC. Once a list of participating LFRs had been compiled, the target landings per season, port, and fishery were then allocated evenly among these LFRs (Gisborne: Gisborne Fisheries Ltd and Moana Pacific Fisheries Ltd; Napier, Hawke Bay Seafood Ltd and Star Fish Supply Ltd; Wellington: Deep Blue Seafoods Ltd, John's Fish Market Ltd, and Pacific Catch Ltd). ATIFMC was then asked to assist each LFR to nominate suitable staff to carry out the sampling work from day to day. Sampling was then delegated to these staff. Nominated staff were given a comprehensive briefing and training session by NIWA and ATIFMC before beginning sampling at the start of the 2004-05 fishing year and all equipment and consumables (including suitable food-safe measuring board, tweezers, otolith envelopes, pencils, and a comprehensive set of notes prepared by NIWA) were provided. An ongoing data quality assurance programme involving regular contact with and debriefing of the nominated sampling staff was established by NIWA and ATIFMC to be managed by ATIFMC.

2.2.4 Sample data collection

Sampling staff were asked to sample landings on a "first come, first served" basis within the seasonport sampling strata relevant to their fishery. Staff were asked not to sample landings less than 100 kg . Once a suitable landing had been selected (that is, a landing of the required weight, from the required fishery), staff were asked to collect simple random sample of unsorted fish of the required size (a total of 25 fish if the landing was 1000 kg or less in, 50 fish if more than 1000 kg) from the catch received for that landing. Staff were asked not to sample landings where they knew or suspected that the catch had been pre-sorted (by size etc.). Staff were asked to collect the fork length (to the nearest centimetre below actual fork length), sex, and sagittal otolith pair from each fish in the sample and the macroscopic gonad maturity stage of all female fish. The five-point NIWA-Ministry of Fisheries Observer Programme generalised gonad maturity scale was used (Sutton 2002).

2.3 Otolith preparation and analysis

All blue moki otoliths collected during the market sampling programme were retrieved from the Ministry of Fisheries otolith collection. All associated otolith inventory data were extracted from fisheries research database age (Mackay \& George 2000) and all associated market sampling data were extracted from database market (Fisher \& Mackay 2000).

A total of 2331 sagittal otolith pairs was collected from both fisheries over both fishing years, of which 1369 were collected during 2004-05, and 962 were collected during 2005-06. A random subsample of about 1000 otoliths was selected from the set of 1369 sagittal otolith pairs collected during 2004-05, with the sample inclusion probability for each otolith weighted to be roughly proportional to the landing weight, and a minimum of 10 otoliths was selected from each sampled landing. All of the 962 sagittal otolith pairs collected during the 2005-06 fishing year were selected, as fewer landings were sampled and otoliths were collected this year than was planned.

Francis (1981a) used a "break and burn" method derived from that of Christensen (1964) to prepare his blue moki otolith sections. This involved breaking each otolith by hand along its nuclear plane, then burning it in a naked Bunsen flame to improve the contrast between successive opaque and translucent growth zones. While this method can produce sections with good contrast between successive growth
zones, it is time consuming, somewhat hit and miss, and not suited to the preparation of large numbers of otoliths, such as in this study. We therefore adapted the preparation and reading methods of Manning et al. (2008) for tarakihi, a closely related species with similar sized and shaped sagittal otoliths, instead. Manning et al. (2008) used a so-called "thick section" method, where relatively large numbers of otoliths are aligned in columns in a single mould and embedded in clear epoxy resin, then sectioned transversely along the nuclear plane. Large numbers of otoliths can be processed quickly using this method, especially if multiple layers of otoliths are embedded.

We used the right otolith from each pair of selected otoltihs. Where the right otolith had not been collected or was damaged, we used the left otolith instead. The otoliths were first baked in a ConTherm Series 5 scientific oven at $285{ }^{\circ} \mathrm{C}$ for 5 minutes until amber coloured. The baked otoliths were then embedded in layers in Araldite K142 clear epoxy resin. Once the resin blocks had cured, the embedded otoliths were sectioned transversely along the nuclear plane using a Struers Accutom-2 precision wafering saw turning a single Extec 12205 diamond-edged blade (blade thickness 0.3 mm). The cut surfaces of the resin blocks were then polished using Struers P1200 carborundum paper. Otoliths from tarakihi 25 cm or in fork length are usually read whole due to their small less size and fragility (Stevenson \& Horn 2004, Manning et al. 2008), but as there were no otoliths from fish smaller than 40 cm in fork length in this study, all the blue moki otoliths in this study were embedded and sectioned.

The sectioned otoliths were read under reflected light using a Wild M400 binocular microscope at $\times 25$ magnification: $\times 40$ magnification was occasionally used to resolve the outer zones of otoliths from older fish. A thin layer of paraffin oil was applied to the cut surfaces of each section to improve clarity. Readings were generally made along an axis from the nucleus out towards the ventral margin to a point usually adjacent to the sulcus, but sometimes also on the dorsal margin or extended along the dorsoventral axis. Sometimes readings were started near the sulcus, but finished in some other area of the section; counts in the two areas were linked by tracing a clear zone across the section. All otoliths exhibited alternating light and dark regions under reflected light. Following Francis (1981a), we assumed that these light and dark regions were opaque and translucent zones (respectively) and that a single light (opaque) and a single dark (translucent) zone corresponds to a single year's growth (annulus). The number of fully formed translucent zones present, a five-point "readability" score, and a three-point "margin-state" score were recorded for each otolith (Table 3). All prepared (sectioned or whole) otoliths were read once by one reader (M. L. Stevenson). The reader had no knowledge of fish length or sex at the time of reading. Translucent zone counts were converted to decimalised age estimates using a simple algorithm (see below).

Otolith reading precision was quantified by carrying out within- and between-reader comparison tests after Campana et al. (1995). A subsample of 200 otoliths was randomly selected from the set of all otoliths prepared in this study. The subsampled otoliths were then re-read by the first reader and read by a second reader (P. L. Horn) and both sets of results compared with the first reader's first set of results. The Index of Average Percentage Error, IAPE (Beamish \& Fournier 1981), and mean coefficient of variation (mean c.v.) (Chang 1982), were calculated for each test. Where $X_{i j}$ is the i th count of the j th otolith, R is the number of times each otolith is read, and N is the number of otoliths read or re-read,

$$
\begin{equation*}
\mathrm{IAPE}=100 \times \frac{1}{N} \sum_{j=1}^{N}\left[\frac{1}{R} \sum_{i=1}^{R} \frac{\left|X_{i j}-X_{j}\right|}{X_{j}}\right], \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { mean c.v. }=100 \times \frac{1}{N} \sum_{j=1}^{N}\left[\frac{\sqrt{\sum_{i=1}^{R} \frac{\left(X_{i j}-X_{j}\right)^{2}}{R-1}}}{X_{j}}\right] \tag{2}
\end{equation*}
$$

2.3.1 Converting translucent-zone counts to age estimates

A simple algorithm was used to convert translucent zone counts to decimalised age estimates. The algorithm involves treating estimated fish age, \hat{a}, as the sum of three time components, namely,

$$
\begin{equation*}
\hat{a}_{i}=t_{i, 1}+t_{i, 2}+t_{i, 3} \tag{3}
\end{equation*}
$$

where $t_{i, 1}$ is the elapsed time from spawning to the end of the first fully formed translucent zone present in the otolith, $t_{i, 2}$ is the elapsed time from the end of the first fully formed translucent zone to the end of the outermost fully formed translucent zone for the i th fish, $t_{i, 3}$ is the elapsed time from the end of the outermost fully formed translucent zone to the date when the i th fish was captured. Hence,

$$
\begin{align*}
& t_{i, 1}=t_{i, \text { end first translucent zone }}-t_{i, \text { spawning date }} \\
& t_{i, 2}=\left(n_{i}+w\right)-1 \tag{4}\\
& t_{i, 3}=t_{i, \text { capture }}-t_{i, \text { end last translucent zone }}
\end{align*}
$$

where n_{i} is the total number of translucent zones present for fish i, and w is an edge interpretation correction after Francis et al. (1992) applied to $n_{i}: w=1$ if the recorded margin state $=$ "wide" and fish i was collected after the date when translucent zones are assumed to be fully formed, $w=-1$ if the recorded margin state $=$ "narrow" and fish i was collected before the date when translucent zones are assumed to be fully formed, otherwise $w=0$.

Because of our current inability to precisely estimate spawning and translucent zone completion dates for individual blue moki, these dates were generalised for all fish. From Francis (1981b), we assumed an arbitrary spawning date of 1 October for all fish, and a date of 1 November for completion of all translucent (winter) growth zones (formation was assumed to begin on 1 May). The corresponding landing date was used as the capture date for each fish. Decimalised years were assumed for all time components. So, the estimated age for a fish captured on 30 November 2005 with a count of 21 completed translucent zones and a medium margin is $\hat{a}=t_{1}+t_{2}+t_{3}=0.08+20+0.08=20.16$ years (Figure 7).

Table 3: Readability and margin-state scores used in otolith readings.

Five-point readability score

Score Description

1 Otolith very easy to read; excellent contrast between translucent and opaque zones; ± 0 between subsequent translucent-zone counts of this otolith

2 Otolith easy to read; good contrast between translucent and opaque zones, but not as marked as in " 1 "; ± 1 between subsequent translucent-zone counts of this otolith

3 Otolith readable; less contrast between translucent and opaque zones than in " 2 ", but alternating zones still apparent; ± 2 between subsequent translucent zone counts of this otolith

4 Otolith readable with difficulty; poor contrast between translucent and opaque zones, deemed to be worse than in either " 2 " or " 3 "; ± 3 or more between subsequent counts of this otolith
5 Otolith unreadable

Three-point margin state score

Score Description
Narrow Last translucent zone present deemed to be fully formed; a very thin, hairline layer of opaque material is present outside the last translucent zone

Medium Last translucent zone present deemed to be fully formed; a thicker layer of opaque material, not very thin or hairline in width, is present outside the last translucent zone; some new translucent material may be present outside the thicker layer of opaque material, but generally does not span the entire margin of the otolith

Wide Last translucent zone present deemed not to be fully formed; a thick layer of opaque material is laid down on top of the last fully formed opaque zone, with new translucent material present outside the opaque layer, spanning the entire margin of the otolith

2.3.2 Calculating scaled length- and age-frequency distributions using Catchatage

Description

Catchatage (Bull \& Dunn 2002) is a package of R functions (R Development Core Team 2005) developed and maintained by NIWA. It computes biomass estimates and scaled length-frequency distributions by sex and by stratum for trawl survey and market-sampling data using the calculations in Bull \& Gilbert (2001) and Francis (1989). If passed a set of length-at-age data, it can construct an age-length key, which can then be applied to scaled length-frequency distributions to compute scaled age-frequency distributions, also by sex and stratum. A "direct-age" subroutine also exists, where individual age observations are weighted up to stratum catch totals using specified length-at-age and weight-at-length relationships. The coefficients of variation (c.v.) for each length and age-class and the overall mean-weighted c.v. for each length and age-frequency distribution are computed using a bootstrapping routine (Efron \& Tibshirani 1993): fish length (or age) records are resampled within each station (or sample), stations (or samples) are resampled within each stratum, and the length-atage data used to construct an age-length key are simply resampled, all with replacement. The bootstrap length- and age-frequency distributions are computed from each resample and the c.v.s for each length- and age-class and mean-weighted c.v.s for each length and age distribution computed from the bootstrap distributions.
Typical prepared blue moki sagittal otolith from a 62 cm FL female landed on 30 November 2005 in Napier. The nucleus is
marked with a cross. Fully formed translucent growth zones are marked with dots. Twenty-one fully formed translucent growth zones are present, leading to an estimated age for this fish of 20.16
Figure 7:

Analyses performed

Catchatage was used to calculate scaled length- and age-frequency distributions for the catch in both fisheries. Bootstrapped c.v.s and mean-weighted c.v.s were computed for each length and age class and length- and age-frequency distribution from 1000 iterations of the resampling algorithm. The weight-at-length relationship used to scale the length observations was parameterised using the results of a geometric mean regression of fish weight (in kilograms) on length (fork length in centimetres) for both sexes combined presented by Francis (1979). An unpublished length-at-age relationship for both sexes combined (M. Francis, pers. comm.) referred to in the May 2006 stock assessment Plenary Report (Ministry of Fisheries Science Group 2006) was used in the scaled age-frequency calculations. These relationships are given in Table 4.

Table 4: Blue moki biological parameters used in the scaled length and age frequency calculations.

Relationship	Parameter	All fish	Source
Weight-at-length	a	0.055×10^{-5}	Francis (1979).
	b	2.713	
Length-at-age	$L_{\infty, s}$	66.95	M. Francis (pers. comm.)
	k_{s}	0.208	
	$t_{0, s}$	-0.029	

Data matching

Catch-effort and landings data stored in the warehou database for the 2004-05 and 2005-06 fishing years were matched to each sampled landing to allow sampling representativeness to be investigated. Landings were matched to particular warehou trip keys using the concatenation of vessel name and landing date.

2.4 Mortality estimates

Total mortality estimates were derived from the fishery catch-at-age curves using the ChapmanRobson estimator. The Chapman-Robson estimator of total instantaneous mortality is

$$
\begin{equation*}
\hat{Z}=-\log _{e} \hat{s} \tag{5}
\end{equation*}
$$

where \hat{s}, the estimated survival rate, is

$$
\begin{equation*}
\hat{s}=\frac{\sum_{i=1}^{N} y_{i}}{N+\sum_{i=1}^{N} y_{i}-1} \tag{6}
\end{equation*}
$$

where y_{i} is the true age of the i th fish in terms of years after recruitment, and N is the total size of the recruited population. The number of individuals that survive to exactly age y is unknown, so the approximations

$$
\begin{equation*}
N=\sum_{x=0}^{k} N_{x} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{N} y_{i}=\sum_{x=1}^{k} x N_{x} \tag{8}
\end{equation*}
$$

were used, where N_{x} is the number of individuals in the population or catch between age x and age $x+1$, and k is the number of age groups in the recruited population minus one (Jensen 1985). The Chapman-Robson estimator assumes that the population sampled has a stable age structure, i.e., that recruitment and mortality are constant, that fish greater than the age at full recruitment are equally vulnerable to sampling, and that there are no age-estimation errors (Ricker 1975). Given an instantaneous natural mortality estimate, \hat{M}, an instantaneous fishing mortality estimate, \hat{F}, can be derived from \hat{Z} where $Z=M+F$ as $\hat{F}=\hat{Z}-\hat{M}$.

Manning \& Sutton (2004) gave an expression for an analytical confidence interval for the ChapmanRobson estimator, but also calculated confidence intervals using a bootstrap approach. Their bootstrap approach involved calculating \hat{Z} for different assumed ages at full recruitment for each of the resampled age distributions produced by Catchatage for the scaled age-frequency calculations, then taking appropriate percentiles of the bootstrapped distributions to yield the desired confidence interval. We have used this approach in this study.

2.5 Per-recruit analysis

Per-recruit analysis is a deterministic model of how fish growth and natural and fishing mortality interact to determine the optimum size (or age) at harvest and the optimum fishing mortality to apply to maximise yield or other quantities such as spawning biomass of a cohort of fish. The classical yield-per-recruit model developed by Beverton Holt (1957) gives the total yield available from a cohort of fish when: (i) the instantaneous rates of natural and fishing mortality and are assumed to be constant and independent of age; (ii) all fish recruited to the fishery are assumed to be fully and equally vulnerable to the fishing gear at some age ("knife-edge" selectivity); and (iii) that growth can be represented by the von Bertalanffy length-at-age curve (i.e., $L_{t}=L_{\infty}\left[1-e^{-\kappa\left(t-t_{0}\right)}\right]$). The model can be written as

$$
\begin{equation*}
Y(t)=F N_{r} e^{-M\left(t_{c}-t_{r}\right)} W_{\infty} \sum_{n=0}^{3} \frac{U_{n}}{Z+n \kappa} e^{-n \kappa\left(t_{c}-t_{0}\right)}\left[1-e^{-(Z+n \kappa)\left(t-t_{c}\right)}\right] \tag{9}
\end{equation*}
$$

where $Y(t)$ is the yield per recruit at age t, F is instantaneous fishing mortality, N_{r} is the number of recruits, M is instantaneous natural mortality, t_{c} is the age at which fish are (fully and equally) vulnerable to the fishery (fishing gear), t_{r} is the age at recruitment, W_{∞} is the mean asymptotic weight at age parameter from the relationship $W(t)=W_{\infty}\left[1-e^{-\kappa\left(t-t_{0}\right)}\right]^{3}, U_{n}=+1,-3,+3,-1$ for $n=0,1,2,3$ from the result of a cubic expansion of $W(t), \kappa$ is the rate parameter from $W(t), Z$ is total instantaneous mortality and is defined as $Z=M+F$, and t_{0} is the theoretical age at which a fish is of zero weight from $W(t)$. If Y is evaluated at the maximum age, t_{∞}, then the result, $Y\left(t_{\infty}\right)$, is the total yield over the fishable life span of the cohort. Under this model, maximum yield-per-recruit occurs by applying infinite fishing mortality at critical age $t_{*}=t_{0}+(1 / \kappa) \times \ln (1+3 / m)$, where $m=M / \kappa$.

A convenient, dimensionless reparameterisation of the classical yield-per-recruit model was given by Beverton \& Holt (1964). This is

$$
\begin{equation*}
y=E \sum_{n=0}^{3} \frac{U_{n}(1-c)^{n+m}}{1+n(1-E) / m} \tag{10}
\end{equation*}
$$

where y is the lifetime yield from a cohort as a proportion of the maximum possible weight the cohort would reach if no mortality occurred after reference age t_{0}, E is the exploitation rate, defined as $E=F / Z=F /(M+F), C$ is L_{c} / L_{∞}, the length at which fish are fully and equally vulnerable to the fishing gear as a fraction of their mean asymptotic maximum length, and m is M / κ, natural mortality as a fraction of growth rate. It is also possible to transform the result from y back to the original yield-per-recruit scale using the expression $Y=y e^{M\left(t_{t}-t_{0}\right)} W_{\infty}$. Equivalent expressions can be derived for other quantities per recruit, such as spawning stock biomass.

Although simplistic, in that the spawner-recruit relationship and other important population dynamic processes usually considered in modern cohort-dynamic or statistical catch-at-age models are ignored, per-recruit analysis does allow fishing mortality estimates observed for a stock to be (quickly) compared with reference fishing mortality values. Two common reference points are $F_{\max }$, the fishing mortality that maximises yield-per-recruit for a given age at first capture, and $F_{0.1}$, the fishing mortality where the slope of the yield-per-recruit curve is 10% (0.1) that of the slope of the curve at the origin where zero fishing mortality is applied. The equivalent reference points defined in terms of exploitation rate rather than fishing mortality are $E_{\max }$ and $E_{0.1}$. Note that the latter is not that exploitation rate where the slope of the yield per recruit curve is 10% that of the slope of the curve at the origin, rather it is the result of transforming $F_{0,1}$ using the expression $E=F / Z$. Where $\partial y / \partial F$ is the derivative of the yield-per-recruit model given in equation (9), $F_{0,1}$ is found by finding a value of F that satisfies the expression

$$
\begin{equation*}
\left.\frac{\partial y}{\partial F}\right|_{F=F_{0,1}}=\left.(0.1) \frac{\partial y}{\partial F}\right|_{F=0} \tag{11}
\end{equation*}
$$

and $E_{0.1}$ is found equivalently by solving the expression

$$
\begin{equation*}
\left.\frac{\partial y}{\partial E}\right|_{E=E_{0.1}}=\left.\frac{0.1}{\left(1-E_{0.1}\right)^{2}} \frac{\partial y}{\partial E}\right|_{E=0} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial y}{\partial E}=\sum_{n=0}^{3} \frac{U_{n}(1-c)^{n+m}}{[1+n(1-E) / m]^{2}}\left(1+\frac{n}{m}\right) \tag{13}
\end{equation*}
$$

$F_{\text {max }}$ is found by solving the expression

$$
\begin{equation*}
0=\frac{\partial y}{\partial F} \tag{14}
\end{equation*}
$$

for F, and equivalently, $E_{\text {max }}$ is found by solving the expression

$$
\begin{equation*}
0=\frac{\partial y}{\partial E}=\sum_{n=0}^{3} \frac{U_{n}(1-c)^{n+m}}{[1+n(1-E) / m]^{2}}\left(1+\frac{n}{m}\right) \tag{15}
\end{equation*}
$$

for E.
The per-recruit analysis literature is extensive: of important discussions of aspects of the theory were discussed by Beverton \& Holt (1957, 1964) (model derivation), Deriso (1987), and Fletcher (1987) (reference points) among many others. Generalisation of the per-recruit model to include age-specific mortality (e.g., incorporation of age-specific rather than knife-edge selectivity) and other functional descriptions of length- and weight-at-age is trivial and was discussed in some depth by Quinn \& Deriso (1999). The results of a per-recruit analysis can be misleading when the assumptions made have not been met. However, in this analysis, in the absence of a more robust quantitative stock assessment model for the ECNI blue moki fisheries, we have used classical per-recruit analysis to provide a measuring stick for the fishing mortality estimates that we calculated from the observed catches-at-age in these fisheries. We compare the observed values with the $E_{0.1}$ and $E_{\max }$ references points calculated assuming the quantities specified in Table 4 and derived in Section 3 below. We also discuss the limitations of this method for the ECNI blue moki fisheries (Section 4).

3. RESULTS

3.1 A brief description of the fisheries

Langley \& Walker (2004) presented the last description of the MOK 1 fisheries spanning the 1989-90 to 2001-02 fishing years. We update their summary with an extra five years of data to the end of the 2006-07 fishing year. As noted above, the groomed and merged catch is plotted by fishery, month, and fishing year in Figure 3, by fishery, month, and port of landing in Figure 4, and by fishery, statistical area fished, and port of landing in Figure 6. Here the catch is plotted by month and fishing year, by statistical area and fishing year, by fishing method and fishing year, and by target species and fishing year in Figure 8. The annual groomed and merged catch is plotted by statistical area, target species, and fishing method in Figure 9. The distributions of selected catch and effort variables, including nominal log catch-per-unit-effort (CPUE), are plotted by fishing year for each of the BTTAR and SN-MOK fisheries in Figure 10. Nominal log CPUE is defined as the natural logarithm of the catch divided by the total hours fished per effort stratum for the BT-TAR fishery and as the natural logarithm of the total catch divided by the total amount of net set per effort stratum for the SN-MOK fishery. Cross-tabulations of the data are given in Appendix A. Some important features of the fisheries are immediately apparent from these plots.

- Catches by the BT-TAR and SN-MOK fisheries continue to dominate the catch. Catches by the BT-TAR fishery in MOK 1(E) (i.e., vessels catching moki when targeting tarakihi using bottom trawls in statistical areas on the ECNI) now account for 33% of the total MOK 1 catch in the time series and ranging between 26 and 47% of the total catch in any given fishing year. Catches by the SN-MOK fishery in MOK 1(E) (i.e., vessels targeting blue moki using setnets in statistical areas on the ECNI) now account for 43% of the total catch, ranging between 17 and 61% of the total catch in any given fishing year. Both the total catch and nominal catch-per-unit-effort in the SN-MOK fishery appear to have increased over the last five fishing years (2001-02 to 2005-06). Total catch and nominal log catch-per-unit-effort in the BT-TAR fishery, however, appear to be static or slightly declining over this period.
- Catches by fisheries other than the BT-TAR and SN-MOK fishery are relatively unimportant. Of the other fisheries, the moki catch by setnet vessels targeting blue warehou on the ECNI is the only minor component of any note, accounting for 11% of the total catch in the dataset. However, this fishery appears to be becoming less and less important, accounting for 3-4\% of the total catch in recent years (2001-02 to 2005-06). In the past, this fishery has accounted for as much as 25% of the total catch (1999-2000). There is some blue moki catch

Table 5: Achieved sampling effort (numbers of landings sampled and otolith pairs collected) in the BT-TAR and SN-MOK fisheries in MOK 1(E) during the 2004-05 and 2005-06 fishing years. 2005, 2004-05 fishing year; 2006, 2005-06 fishing year. Yearly subtotals are shaded.

Numbers of landings sampled

Year	Fishery	Port	Season				
			"Spring"	$\begin{gathered} \text { "Summer" } \\ \text { (Jan-Feb-Mar) } \end{gathered}$	"Autumn" (Apr-May-Jun)	"Winter" (Jul-Aug-Sep)	Total
2005	BT-TAR	Gisborne	-	-	-	1	1
		Napier	1	2	-	5	8
		Wellington	1	-	1	-	2
	SN-MOK	Gisborne	1	-	-	10	11
		Napier	1	1	2	-	4
		Wellington	2	-	2	2	6
	All	All	6	3	5	18	32
2006	BT-TAR	Gisborne	-	-	-	1	1
		Napier	1	1	2	-	4
		Wellington	2	-	2	2	6
	SN-MOK	Gisborne	-	-	-	-	0
		Napier	-	-	-	2	2
		Wellington	-	-	4	8	12
	All	All	3	1	8	13	25
Total	All	All	9	4	13	31	57

Numbers of otolith pairs collected

Year	Fishery	Port	Season				
			$\begin{gathered} \hline \text { "Spring" } \\ \text { (Oct-Nov-Dec) } \end{gathered}$	"Summer" (Jan-Feb-Mar)	$\begin{array}{r} \text { "Autumn" } \\ \text { (Apr-May-Jun) } \end{array}$	"Winter" (Jul-Aug-Sep)	Total
2005	BT-TAR	Gisborne	-	-	-	50	50
		Napier	25	49	-	237	311
		Wellington	25	-	49	-	74
	SN-MOK	Gisborne	25	-	-	400	425
		Napier	-	-	-	50	50
		Wellington	-	47	-	366	413
	All	All	75	96	49	1103	1323
2006	BT-TAR	Gisborne	-	-	-	23	23
		Napier	50	25	100		175
		Wellington	55	-	100	75	230
	SN-MOK	Gisborne	-	-	-	-	0
		Napier	-	-	-	77	77
		Wellington	-	-	202	301	503
	All	All	105	25	402	476	1008
Total	All	All	180	121	451	1579	2331

Table 6: Summary of fishing and sampling activity during the 2004-05 fishing year. The numbers of landings and reported greenweight catch (t) by all vessels that reported a MOK 1 landing during the 2004-05 fishing year ("All"), by all vessels in the BT-TAR and SN-MOK fleets in MOK 1(E) ("Fleet"), and by all sampled vessels ("Samp.") by month. $P_{S F}$, the sampled catch as a percentage of the fleet catch by numbers or weight. Note that one landing of the 32 sampled during 2004-05 could not be matched to the catch-effort and landings dataset supplied by MFish.

Year	Month	Landed catch (kg)				Number of landings			
		All	Fleet	Samp.	$P_{\text {SF }}$	All	Fleet	Samp.	$P_{S F}$
2004	10	23590	17942	2801	16	211	78	3	4
2004	11	23731	10430	-	-	265	72	-	-
2004	12	19845	13139	-	-	224	70	-	-
2005	1	21110	10999	812	7	262	74	1	1
2005	2	14909	8574	213	2	192	62	1	2
2005	3	16613	9683	117	1	171	74	1	1
2005	4	8820	6330	-	-	139	61	-	-
2005	5	28279	18397	2239	12	209	79	1	1
2005	6	40680	34529	-	-	189	85	-	-
2005	7	51025	45174	5388	12	209	115	2	2
2005	8	43110	38634	13948	36	228	101	5	5
2005	9	165423	159708	47357	30	264	141	17	12
	Total	457135	373540	72874	20	2563	1012	31	3

Table 7: Summary of fishing and sampling activity during the 2005-06 fishing year. The numbers of landings and reported greenweight catch (t) by all vessels that reported a MOK 1 landing during the 2005-06 fishing year ("All"), by all vessels in the BT-TAR and SN-MOK fleets in MOK 1(E) ("Fleet"), and by all sampled vessels ("Sampled") by month. $P_{S F}$, the sampled catch as a percentage of the fleet catch by numbers or weight. All landings sampled during 2005-06 could be matched to the catch-effort and landings dataset supplied by MFish.

Year	Month	Landed catch (kg)				Number of landings			
		All	Fleet	Samp.	$P_{S F}$	All	Fleet	Samp.	$P_{S F}$
2004	10	24668	17877	616	3	225	79	1	1
2004	11	19952	11263	-	-	216	77	-	-
2004	12	22349	14698	2132	15	227	69	2	3
2005	1	11242	6097	-	-	155	52	-	-
2005	2	10534	4351	-	-	144	64	-	-
2005	3	10926	5739	182	3	162	73	1	1
2005	4	9594	6351	-	-	169	55	-	-
2005	5	45245	38658	2376	6	210	99	2	2
2005	6	56895	52994	11418	22	191	99	6	6
2005	7	67881	64480	7691	12	189	111	5	5
2005	8	33103	29281	456	2	196	102	1	1
2005	9	126685	106622	10808	10	235	119	7	6
	Total	439074	358410	35679	10	2319	999	25	3

Figure 8: The groomed and merged MOK 1 catch by: (a) month and fishing year; (b) statistical area and fishing year; (c) method and fishing year; and (d) target species and fishing year. Circle areas are proportional to the amount of catch in each factor level and fishing year combination. The area of a circle 0.25 cm in diameter is $\mathbf{1 2 0} \mathbf{t}$.
by bottom trawl vessels targeting red gurnard in statistical areas 013 to 016 , but this is of minor importance. Blue moki catches by midwater trawl vessels reportedly targeting either blue moki or hoki in statistical area 016 are almost certainly data entry or processing errors associated with the Cook Strait hoki fishery, where the catch and target species is presumably hoki, and the landed catch should have been recorded as "HOK 1" not "MOK 1".

- The catch continues to be highly seasonal. Two-thirds (66%) of the catch is caught in the six months from May to October over all factors in the dataset (all methods, areas, target species, etc.). Seasonality in the SN-MOK fishery remains particularly marked, with 91% of the total catch in this fishery caught during this time. There continues to be somewhat less seasonality in the BT-TAR fishery, with 62% of the total catch in this fishery caught during May-October across all years in the data.
- Contributions to the total MOK 1 catch from areas outside the ECNI were negligible. The catch outside MOK 1(E) by all fisheries (i.e., all areas, methods, target species) accounts for only 6% of the total MOK 1 catch in the data. Within the ECNI, most of the catch continues to be caught in statistical areas 013 to 016 , with lesser contributions from 010,012 , and 018. Relatively more of the blue moki catch in the BT-TAR fishery comes out of 016 than in the SN-MOK fishery. Outside the ECNI, statistical area 039 is the only statistical area of any importance.
- There is some evidence of a recent change in the composition of the fleet in the SN-MOK fishery. Median vessel experience per effort stratum per fishing year in the BT-TAR fishery (where vessel experience per effort stratum is defined as the number of years each vessel is recorded in the dataset, beginning at zero, and incremented by one for each fishing year in the dataset where associated effort strata exist) is increasing throughout the dataset, indicating an ageing fleet, although new vessels continue to enter and become active in the fishery. However, median vessel experience per effort stratum per fishing year for records associated with the SN-MOK fishery increases steadily throughout the early to middle part of the time series, but drops suddenly after 1999-2000, indicating a pulse of new vessels entering the fishery (or at least this dataset).
- There is a corresponding change in the median length of the associated fishing vessel per effort stratum in the SN-MOK fishery at this time, with median vessel length per effort stratum per fishing year in this fishery increasing from about 7 m to about 13 m after 19992000.This probably does not indicate a large change in the relationship between catch and effort in this fishery as the catching power of a setnet vessel is not thought to be as closely related to the size of the vessel or of its engine as in a trawl vessel. Median vessel length per effort stratum per fishing year in the BT-TAR fishery has remained constant at about 18 m over the time series. Median vessel engine power per effort stratum per fishing year in the BTTAR fishery may have increased slightly in the early 1990s, but has remained constant thereafter.

3.2 Market sampling results

A total of 57 landings was sampled and 2331 sagittal otolith pairs were collected from the blue moki catch in the BT-TAR and SN-MOK fisheries in MOK 1 (E) over the 2004-05 and 2005-06 fishing years (Table 5), well short of the target sampling effort of 100 landings to be sampled over these fisheries and fishing years. The true reasons for the difference between the allocated and achieved sampling effort are unknown, but some contributing factors were identified in discussions with ATIFMC (to whom sampling had been contracted). These included: (i) resignations of designated sampling staff following training; (ii) restructuring of the Moana Pacific Fisheries processing factory in Gisborne during 2005-06; and (iii) the simple failure of some participating LFRs to deliver on their undertaken responsibilities. An attempt was made to mitigate this by transferring some sampling effort from Napier and Gisborne to Wellington in early 2007, where several important LFRs receiving catch from the BT-TAR and SN-MOK fisheries in these areas are based and where trained and experienced (NIWA) staff were available to carry out the sampling.

The sampled catch during 2004-05 accounted for 20% of the combined catch for both the BT-TAR and SN-MOK fisheries in MOK 1(E) during this year (Table 6). During 2005-06, the sampled catch accounted for 10% of the combined BT-TAR and SN-MOK fleet catch in MOK 1(E) (Table 7). An attempt to evaluate the representativeness (or otherwise) of the sample data was made as follows. The sampled landings were first matched to the groomed but unmerged catch-effort and landings dataset. All sampled landings could be matched. A summary of fishing and sampling effort (weight of landed catch, numbers of landings) is provided from the matched data for the 2004-05 fishing year in Figure 11. The catch by the sampled and entire BT-TAR fleet in MOK 1(E) by statistical area and target species during 2004-05 is compared in Figure 12. The catch by the sampled and whole SN-MOK fleet in 2004-05 by these factors is compared in Figure 13. Fishing and sampling effort during 2005-06 are summarised in Figure 14. The sampled and whole BT-TAR fleet catch during 2005-06 by statistical area and target species are compared in Figure 15 and the SN-MOK catch during 2005-06 is shown in Figure 16. Vessels were defined as being active in either fishery in MOK 1(E) during a given fishing trip if they had one or more associated fishing event records matching the fishing gear, target species, and statistical areas defined for each fishery.

(1) чэџег tarakihi; WAR, blue warehou; Other, all other target species), statistical area, and fishing method (BT, bottom trawl; MW, midwater trawl; SN,

Figure 10: Box and whisker plots of selected variables in the groomed and merged dataset per effort stratum by fishing year fishery for the BT-TAR and SN-MOK fisheries: (a) total catch; (b) vessel length; (c) vessel experience; (d) vessel main engine power; (e) total fishing duration; (f) total number of trawls; (g) total amount of net set; and (h) nominal log catch-per-unit effort (catch per hour fished for BT-TAR and catch per metre net set for SN-MOK). Box hinges are drawn at the first and third quantiles. The whiskers extend three times the interquartile range above and below the first and third quantiles. Nominal outliers are plotted singly.

Figure 11: Summaries of fishing and sampling activity in MOK 1(E) during the 2004-05 fishing year. Histograms of the total landed catch (dark-grey bars) by all vessels, by all vessels in the BTTAR and SN-MOK fisheries (light-grey bars), and by all sampled vessels (white bars) are overlaid. Numbers of landings by each fleet sector are also overlaid.

Figure 12: Comparing the sampled and BT-TAR fleet catch and effort during the 2004-05 fishing year by two covariates. Proportions of the estimated blue moki catch and of the number of trawl shots by (a) statistical area and (b) target species for all vessels in the BT-TAR fishery in MOK 1(E) are compared with those for the sampled fleet.
(a) statistical area

(b) target species

Figure 13: Comparing the sampled and SN-MOK fleet catch and effort during the 2004-05 fishing year by two covariates. Proportions of the estimated blue moki catch and of the total amount of net set by (a) statistical area and (b) target species for all vessels in the SN -MOK fishery in MOK 1(E) are compared with those for the sampled fleet.

Figure 14: Summaries of fishing and sampling activity in MOK 1(E) during the 2005-06 fishing year. Histograms of the total landed catch (dark-grey bars) by all vessels, by all vessels in the BTTAR and SN-MOK fisheries (light-grey bars), and by all sampled vessels (white bars) are overlaid. Numbers of landings by each fleet sector are also overlaid.
(a) statistical area

(b) target species

Figure 15: Comparing the sampled and BT-TAR fleet catch and effort during the 2005-06 fishing year by two covariates. Proportions of the estimated blue moki catch and of the number of trawl shots by (a) statistical area and (b) target species for all vessels in the BT-TAR fishery in MOK 1(E) are compared with those for the sampled fleet.
(a) statistical area

(b) target species

Figure 16: Comparing the sampled and SN-MOK fleet catch and effort during the 200506 fishing year by two covariates. Proportions of the estimated blue moki catch and of the total amount of net set by (a) statistical area and (b) target species for all vessels in the SN-MOK fishery in MOK 1(E) are compared with those for the sampled fleet.

Some differences between the sampled and entire catch for these fleets by the levels of these factors during both fishing years are noted. Generally, however, these differences are small to moderate, suggesting that the sampled catch is generally representative of the entire fleet catch, but some particular discrepancies are noted. Statistical areas 013 and 016 are under-represented and areas 014 and 015 are over-represented in both 2004-05 and 2005-06 for the BT-TAR fleet, although the catch and trawl effort by target species for the sampled fleet are comparable to those for the fleet as a whole, suggesting that the sampled fleet was fishing in a similar manner to the fleet as a whole, even though there may be some minor to moderate spatial differences in their catch and effort. Statistical area 013 is over-represented in the SN-MOK catch during 2004-05, but the catch and net effort by target species for the sampled and entire fleet during this year are comparable, again suggesting no gross discrepancies in fishing patterns. However, the SN-MOK fleet sample during 2005-06 has far more blue moki catch and effort associated with targeting blue warehou (WAR) than the fleet as a whole. If target species truly indexes different fishing patterns, then the sampled SN-MOK catch during 200506 may not be representative of the fishery.

3.3 Otolith readings and analysis

Despite the different method used, as was the case in Francis's (1981a) earlier study, alternating light (opaque) and dark (translucent) regions were visible in all prepared otolith sections. Translucent zone counts could be produced for virtually all of the prepared otoliths. Only 5 out of 1927 prepared otoliths were deemed to be unreadable. The age estimates produced ranged from 2.6 to 43.8 years. Results of the between-reader comparison test for the prepared otoliths collected during both the 2004-05 and 2005-06 fishing years are plotted in Figure 17. The relative symmetry of the histograms in panel (a), the position of the error bars about the one-to-one line in panel (b), and the relatively even distribution of plotted points about the zero line in panel (c) all suggest that no systematic bias exists between readers. A between-reader mean c.v. of 9.42% was obtained, equivalent to a between reader IAPE of 6.66\%.

The smallest fish in the dataset compiled from the otolith readings was a 40 cm FL immature female, 2.9 years of age, that was caught in September 2006 by a setnet vessel targeting blue moki and butterfish (Odax pullus; MFish species code BUT) in statistical area 015 off the southeastern tip of the North Island. The largest fish present was an 83 cm FL female, 32.0 years old with spent ovaries, that was caught in October 2005 by a trawl vessel targeting tarakihi and red gurnard in statistical areas 013 and 014. The youngest fish present was a 2.7 year old immature male, 55 cm in fork length, that was caught in June 2006 by a trawl vessel targeting tarakihi in statistical areas 014 and 015 . The oldest fish was a 43.8 year old female, 68 cm in fork length, that was caught in July 2006 by a trawl vessel that was also targeting tarakihi and red gurnard in statistical areas 014 and 015.

Length- and weight-at-age models fitted to the length- and weight-at-age data are plotted in Figure 18 (length) and Figure 19 (weight). Parameter estimates are tabulated in Table 8 (length) and Table 9 (weight). Length- and weight-at-age models were first fit assuming a single set of length- and weight-at-age function parameters for all fish in the dataset and normal errors parameterised with a constant variance, log-normal errors, and normal errors parameterised with a constant coefficient of variation. Comparing the model AIC and BIC statistics suggested the log-normal models had the greatest support from the data and these were refitted assuming separate length- and weight-at-age function parameters for males and females.

Figure 17: Results of the between-reader comparison test: (a) histogram of differences between the ages estimated during each reading of the same otolith; (b) differences between ages estimated during the second reading relative to the result of the first reading; (c) bias plot; and (d) c.v. and Index of Average Percentage Error (APE) profiles (precision) for a given age produced during the first reading. The expected one-to-one (solid line) and actual relationship (dashed line) between the ages estimated during the first and second readings of the same otolith are overlaid on (b) and (c). The numbers on (b) are the numbers of readings at each point. The error bars on (c) are 95% confidence intervals about the mean age produced during the second set of readings for a given age produced during the first set.

(Бу) $7 Ч Б!ə М$
Figure 19: Blue moki weight-at-age by sex with fitted Schnute growth curves from the two-sex lognormal model overlaid.

(7」 ய๐) чฉбиәา

Table 8: Results of the three Schnute length-at-age models fitted assuming the same model parameters for all fish and either normal (constant σ^{2}), log-normal, or normal (constant c) errors. p, number of parameters and the two-sex log-normal model; AIC, Akaike Information Criterion; BIC Bayesian Information Criterion.

Model	Error structure	p	AIC	BIC	Parameter	Estimate	Confidence interval
1	Normal (constant σ^{2})	4	10965.5	10987.66	$L_{1, \text { All }}$	49.29	(48.49, 50.09)
					$L_{2, \text { All }}$	63.99	(63.53, 64.45)
					$\kappa_{\text {All }}$	0.15	$(0.13,0.17)$
					σ^{2}	19.53	(18.29, 20.78)
2	Log-normal	4	10904.07	10926.24	$L_{1, \text { All }}$	49.21	(48.52, 49.91)
					$L_{2, \text { All }}$	63.79	(63.31, 64.28)
					$\kappa_{\text {All }}$	0.15	(0.13, 0.17)
					σ^{2}	0.01	(0.01, 0.01)
3	Normal (constant c)	4	10934.28	10956.45	$L_{1, \mathrm{All}}$	49.49	(48.81, 50.17)
					$L_{2, \text { All }}$	64.14	(63.65, 64.63)
					$\kappa_{\text {All }}$	0.14	(0.12, 0.16)
					c	0.07	(0.07, 0.08)
4	Log-normal	7	10842.90	10881.07	$L_{1, \mathrm{M}}$	49.23	(48.40, 50.06)
					$L_{2, \mathrm{M}}$	62.29	(61.60, 62.97)
					κ_{M}	0.16	(0.13, 0.19)
					$L_{1, \mathrm{~F}}$	49.25	(48.01, 50.49)
					$L_{2, \mathrm{~F}}$	64.87	(64.22, 65.52)
					$\kappa_{\text {F }}$	0.15	(0.12, 0.18)
					σ^{2}	0.01	(0.01, 0.01)

Table 9: Results of the three Schnute weight-at-age models fitted assuming the same model parameters for all fish and either normal (constant σ^{2}), log-normal, or normal (constant c) errors. p, number of parameters and the two-sex log-normal model;

Model	Error structure	p	AIC	BIC	Parameter	Estimate	Confidence interval
1	Normal (constant σ^{2})	4	4286.00	4308.17	$W_{\infty, \text { All }}$	4.55	$(4.43,4.68)$
					$k_{\text {All }}$	0.15	$(0.13,0.17)$
					$t_{0, \mathrm{All}}$	-6.01	(-7.67, -4.35)
					σ^{2}	0.57	(0.53, 0.60)
2	Log-normal	4	3968.25	3990.42	$W_{\infty, \text { All }}$	4.45	(4.32, 4.59)
					$k_{\text {All }}$	0.15	(0.13, 0.17)
					$t_{0, \mathrm{AlI}}$	-6.19	(-7.56, -4.82)
					σ^{2}	0.04	(0.04, 0.04)
3	Normal (constant c)	4	4137.23	4159.40	$W_{\infty, \text { All }}$	4.69	(4.53, 4.86)
					$k_{\text {All }}$	0.13	$(0.11,0.15)$
					$t_{0, \text { All }}$	-7.6	(-9.13, -6.08)
					${ }^{\text {c }}$	0.21	(0.20, 0.21)
4	Log-normal	7	3907.10	3945.90	$W_{\infty, \mathrm{M}}$	4.15	$(3.98,4.31)$
					$k_{\text {M }}$	0.16	$(0.13,0.19)$
					$t_{0, \mathrm{M}}$	-6.22	(-8.08, -4.36)
					$W_{\infty, \mathrm{F}}$	4.66	(4.47, 4.85)
					k_{F}	0.15	(0.12, 0.18)
					$t_{0,5}$	-5.75	$(-7.77,-3.73)$
					σ^{2}	0.04	(0.04, 0.04)

3.4 The length- and age-composition of the BT-TAR and SN-MOK fisheries

Scaled length- and age-frequency distributions were computed from the data collected during 2004-05 and 2005-06. Unfortunately, the shortfall in landings sampled over both fishing years meant that the scope of the analysis originally planned needed to be revised. Originally, we had intended to scale the data from each fishery to the catch in separate north and south and in- and out-season strata during each fishing year (where 2 spatial divisions $\times 2$ temporal divisions $=4$ strata in total per fishing year); but the under-sampling meant that most strata would have been poorly populated.

Because of this, the data were scaled to separate temporal in- and out-season strata for each fishery and fishing year (where "in-season" was defined to be October and the months from June to September within a given fishing year and "out-season" the remaining months). There was thus no spatial component to the revised analysis. The analyses for both fishing years were carried out separately. The distribution of sampled landings by the fishing year, fishery, and season factors are shown in Table 10. Given that there were fewer than three sampled landings in the SN-MOK outseason strata, these strata (and data) were dropped from the analysis. There were thus three strata in the final analysis: (i) BT-TAR in-season; (ii) BT-TAR out-season; and (iii) SN-MOK in-season by fishing year. The total catch for each stratum was calculated from the groomed and merged catcheffort and landings dataset and rescaled to be proportional to the total recorded annual MOK 1 catches given in Table 1.

Table 10: Numbers of landings by stratum assigned during each fishing year. Separate analyses were carried out during each fishing year. Strata were defined as the interaction between the fisheries and whether the landings were in Season (October and June to September, inclusive) or out of season (November to May, inclusive) within each fishing year. The total catches for all strata calculated from the groomed and merged dataset are also provided. The SN-MOK out-season strata with fewer than three sampled landings (indicated by "*") were dropped from the analysis. N , number of landings

Fishing year	Fishery	Season	N	Total catch (t)
2004-05	BT-TAR	In	8	88
		Out	3	38
	SN-MOK	In	20	167
		Out	1^{*}	15
$2005-06$	BT-TAR	In	7	99
		Out	4	39
	SN-MOK	In	13	134
		Out	1^{*}	33

The scaled-frequency distributions of the fishery catch are plotted separately by sex and by the strata assumed in the analysis in Figure 20. Corresponding age-frequency distributions are plotted in Figure 21. Coefficients of variation for each length- and age-class are overlaid on each panel in Figures 17 and 21. Mean-weighted c.v.s for each length- and age-frequency distribution for each fishing year are given in Table 11, with values between 25 and 63% for the length frequencies and 23 and 60% for the age frequencies. Cumulative-frequency polygons for the age distributions for the 2004-05 and 200506 fishing year are plotted in Figure 22. Sex ratios from the catch-at-age are shown by year and stratum in Table 12.

Table 11: Mean-weighted coefficients of variation (\%) for the length- and age-frequency distributions in the BT-TAR and SN-MOK fisheries sampled during the 2004-05 and 2005-06 fishing years by stratum and sex. Those computed for all strata pooled each year are shaded.

					Sex	
Distribution	Fishing year	Stratum	Males	Females	Unsexed	All fish
Length	$2004-05$	BT-TAR (in season)	57.3	54.2	-	41.9
		BT-TAR (out season)	91.7	75.8	-	63.3
		SN-MOK (in season)	39.7	51.5	-	32.0
		Pooled	32.7	37.3	-	24.9
	$2005-06$	BT-TAR (in season)	59.7	65.8	-	48.0
		BT-TAR (out season)	74.1	75.5	-	56.0
		SN-MOK (in season)	49.2	44.6	-	34.6
Age		37.3	36.5	-	27.6	
		BT-TAR (in season)	51.4	54.2	-	39.3
		BT-TAR (out season)	92.4	64.1	-	55.7
		SN-MOK (in season)	37.4	47.8	-	30.0
		Pooled	30.3	34.3	-	23.1
	$2005-06$	BT-TAR (in season)	58.7	59.2	-	44.9
		BT-TAR (out season)	67.7	81.9	-	59.6
		SN-MOK (in season)	44.0	42.8	-	32.0
		Pooled	35.8	35.2	-	26.1

Table 12: Sex ratios in the catch-at-age by fishing year and stratum assumed in the analysis. Sex ratios are given relative to the number of males in each sex and stratum group in each analysis.

Fishing year			Stratum	
$2004-05$	Sex	SN-MOK (in-season)	BT-TAR (in-season)	BT-TAR (out-season)
	Female	1.0000	1.0000	1.0000
	All fish	2.0095	0.9389	0.5731
$2005-06$	Male	0.6677	0.4842	0.3643
	Female	1.0000	1.0000	1.0000
	All fish	0.9106	1.3528	1.2430
	0.4766	0.5750	0.5542	

Length (cmFL)
Figure 20: The length composition of the BT-TAR and SN -MOK catches during (a) the 2004-05 and (b) 2005-06 fishing years. The length-frequency distributions are plotted by sex and the strata assumed during the analysis. Bootstrapped coefficients of variation for each length class are overlaid (orange lines). Median lengths are noted on each panel (dotted lines).
plotted by sex and the strata assumed during the analysis. Bootstrapped coefficients of variation for each age class are overlaid (orange lines). Median ages are noted on each panel (dotted lines).

Figure 22: Cumulative proportions at age for (a) the 2004-05 and (b) the 2005-06 fishing years by stratum assumed in the scaled age-frequency calculations. The dotted lines are the cumulative proportions-at-age. The surrounding regions are bootstrapped 95% confidence intervals about the cumulative proportions at age. The proportions at age for all fish in each stratum have been scaled to sum to one.

Most fish in the sampled catch were between 50 and 70 cm in fork length (FL), although, as noted, fish as small as 40 cm FL and as large as 83 cm were observed. The scaled length-frequency distributions for the setnet and trawl catches sampled are generally unimodal in both fishing years. There is more apparent "structure" in those strata with fewer associated sampled landings (e.g., the out-season BT-TAR catch sampled in both 2004-05 and 2005-06), but this is a function of the fewer available data associated with these strata. There are no large differences apparent in either the maximum, minimum, or median length between the strata.

There is more structure apparent in the corresponding catches-at-age. Most fish are between 4 and 12 years old, but there is a long tail, with fish as old as 43 years present in the sampled catches. The age distribution tails do not follow a strict exponential decline, with a pulse of fish around 19-20 years of age present in the 2004-05 catch for all sexes and strata assumed in the analysis. The pulse appears at around 20-21 years in 2005-06 and corresponds to the 1984 and 1985 year classes and may correspond to a previous period of successful recruitment that produced year classes that have persisted and are moving through the catch. A strong 5 year old age class apparent in the 2004-05 catch, in particular in the in-season setnet catch, appears as a strong 6 year old age class in 2005-06, corresponding to the 1999 year class. There may be some differences in the age composition of the setnet and trawl catches, but this is not clear. There seems to have been proportionally more younger female fish in the in- and out season trawl catches than in the set-net catch in 2004-05, and for male fish in 2005-06, but the 95% confidence regions typically overlap the cumulative proportion for the
in-season setnet catch, suggesting that these differences are not statistically significant. There are no obvious, consistent trends in sex ratios between strata or fishing years.

3.5 Mortality estimates

The results of applying the Chapman-Robson total mortality estimator to the 2004-05 and 2005-06 catches-at-age assuming ages at full recruitment (AFR) of 4 to 12 years are plotted by AFR, fish sex, and the strata assumed in the catch-at-age calculations (in- and out-season trawl strata pooled) in Figure 23. Median values and 95% confidence intervals calculated from the bootstrap distributions are given in Appendix C. Estimates range from 0.1141 to 0.2358 for males, from 0.1073 to 0.1730 for females, and from 0.1103 to 0.2039 for all fish combined over both fishing years. Assuming an age at full recruitment of 8 years, total mortality estimates are 0.1644 (95% confidence interval: 0.1392 to 0.1951) and 0.1894 (95% confidence interval: 0.1595 to 0.2279) respectively for all fish in the BTTAR and SN-MOK fisheries sampled during 2004-05 and are 0.1396 (95% confidence interval: 0.1165 , to 0.1812) and 0.1358 (95% confidence interval: 0.1189 to 0.1583) for all fish in these fisheries during 2005-06.

The current best estimate for blue moki natural mortality is 0.14 (Ministry of Fisheries Science Group 2008). This value was derived by passing the observed maximum age in Francis (1981a) into the equation $\hat{M}=\ln 100 / t_{\text {max }}$, where $t_{\max }$ is the maximum age attained by the oldest 1% of an unexploited stock. Given that fish as old as 43 years were observed in this study and that the MOK 1(E) stock can hardly be described as unexploited, assuming $t_{\max }=43$ may be more reasonable, leading to a single sex- and time-variant natural mortality estimate for MOK $1(\mathrm{E})$ of 0.11 . Assuming $M=0.11 \mathrm{y}^{-1}$ in $Z=M+F$, given the total mortality estimates for the BT and SN-MOK fisheries above and assuming an age at full recruitment of 8 years, leads to fishing mortality, \hat{F}, estimates of $0.06 \mathrm{y}^{-1}$ and $0.08 \mathrm{y}^{-1}$ for the BT-TAR and SN-MOK fisheries respectively during 2004-05 and 0.03 for both fisheries during 2005-06. Reparameterising these values as exploitation rates produces exploitation rate estimates of 0.392 and 0.472 for the BT-TAR and SN-MOK fisheries during 2004-05 and 0.284 for both fisheries during 2005-06.

3.6 Per-recruit analysis

A yield-per-recruit analysis was carried out using the model described in Section 2.5 assuming the weight-at-length relationship given in Table 4 and the results of fitting the two-sex log-normal lengthand weight-at-age models given in Tables 8 and 9 (derived parameters, including mean asymptotic maximum length or L_{∞}, for the length-at-age model fits are given in Table 13). Blue moki abundance (numbers or fish), fish weight, and total age-class biomass are plotted as functions of age under these assumptions in Figure 24. Six different yield-per-recruit curves are plotted separately as a function of fishing mortality and exploitation fraction given two different assumed natural mortality values (the revised value of $M=0.10 \mathrm{y}^{-1}$ and the value of $M=0.14 \mathrm{y}^{-1}$ specified in the 2008 Plenary Report) and three different assumed ages at full recruitment to the fisheries (4, 8, and 12 years) in Figure 25. Reference fishing mortality values $F_{\max }$, the fishing mortality that maximises yield-per-recruit for a given age at first capture, and $F_{0.1}$, the fishing mortality where the slope of the yield-per-recruit curve is 10% (0.1) that of the slope of the curve at the origin where zero fishing mortality is applied, along with the corresponding values reparameterised as exploitation rates using the equation $E=F / Z$, that is, $E_{\max }$ and $E_{0.1}$, are given in Table 14 . Yield-per-recruit isopleths are plotted as a function of different exploitation rate and ages at full vulnerability to the fishery in Figure 26. Observed exploitation rates from the BT-TAR and SN-MOK fisheries during 2004-05 and 2005-06 fishing years assuming ages at full vulnerability of $4,6,8,10$, and 12 years are overlaid on the isopleth plot. These are well to the left of the lines of both eumetric and cacometric fishing as defined by Clark (1985) for both fisheries and fishing years regardless of the age of full vulnerability assumed.

Table 13: Derived parameters for the three Schnute length-at-age models fitted assuming the same model parameters for all fish and either normal (constant σ^{2}), log-normal, or normal (constant c) errors. p, number of parameters and the two-sex log-normal model.

Model	Error structure	Group (i)	$L_{\infty, i}$	$t_{0, i}$
1	Normal (constant σ^{2})	All	64.65	-5.62
2	Log-normal	All	64.46	-5.69
3	Normal (constant c)	All	64.94	-6.19
4	Log-normal	Male	62.79	-5.74
		Female	65.57	-5.25

Table 14: Selected reference fishing mortality and exploitation fraction values ($E_{\max }, F_{\max }, E_{0.1}$, and $F_{0.1}$) for different assumed ages at full vulnerability ($\mathbf{1 - 1 2}$ years) under the other assumptions (length-at-age, weight-at-age, natural mortality $=\mathbf{0 . 1 0} \mathrm{y}^{-1}$) made in the per-recruit analysis. Inf., infinite.

Age at full vulnerability	$E_{\max }$	$F_{\max }$	$E_{0.1}$	$F_{0.1}$
1	0.7552	0.3084	0.5324	0.1139
2	0.8083	0.4215	0.5537	0.1241
3	0.8609	0.6187	0.5725	0.1339
4	0.9127	1.0449	0.5888	0.1432
5	0.9635	2.6422	0.6028	0.1517
6	1	Inf.	0.6147	0.1595
7	1	Inf.	0.6249	0.1666
8	1	Inf.	0.6335	0.1729
9	1	Inf.	0.6409	0.1785
10	1	Inf.	0.6471	0.1834
11	1	Inf.	0.6524	0.1877
12	1	Inf.	0.6569	0.1915

Figure 23: Results of applying the Chapman-Robson total mortality estimator to the bootstrapped age-frequency distributions for (a) the 2004-05 and (b) 200506 fishing years assuming ages at full recruitment of 8 to $\mathbf{1 2}$. Estimates are plotted by fish sex and the stratum assumed in the age-frequency calculations and the assumed age at full recruitment.

$\underset{v}{Z}$

Figure 24: Blue moki abundance (numbers of fish), weight, and biomass assumed in the yield-perrecruit analysis as function of age. Maximum yield-per-recruit is obtained by applying infinite instantaneous fishing mortality at "critical" age $t_{*}=5.72$ years, indicated by the dashed vertical line.

Figure 25: Yield-per-recruit curves for blue moki plotted as a function of fishing mortality (a) and exploitation fraction (b) for two different assumed natural mortalities ($M=0.10$ and $M=$ 0.14) and ages at full recruitment to the fisheries $(4,8, \& 12$ years $)$.

Figure 26: Blue moki yield-per-recruit isopleths (black lines) for different exploitation rates, E, and assumed ages at full fishery vulnerability, t_{c}, assuming the fitted values for length- and weight-at-age calculated in this study and assuming $M=0.10$. The lines of so-called "eumetric" (blue solid line) and "cacometric" fishing (blue dotted line) after Clark (1985) are overlaid for comparison. Observed exploitation rates for both the BT-TAR and SNMOK fisheries during the 2004-05 and 2005-06 fishing years assuming ages at full recruitment of $4,6,8,10, \& 12$ years are also overlaid (white text: "a", BT-TAR fishery in 2004-05; "b", SN-MOK fishery in 2004-05"; "c", BT-TAR fishery in 2004-05; and "d", SN-MOK fishery in 2005-06).

4. DISCUSSION

4.1 The length and age composition of the catch

The length and age structure of the BT-TAR and SN-MOK catches sampled during this study are generally similar to the catches-at-length. The age range of the blue moki length and age data collected by Francis $(1979,1981 a, 1981 b)$ from around the east coasts of the North and South Islands in the 1970s. The (unscaled) length-frequency distributions presented by Francis (1981a) for the Kaikoura and Gisborne catches in 1977-78 were also unimodal, with fish as small as 40 cm and as large as 80 cm in fork length present in his samples, but with most fish between about 50 cm to 70 cm in fork length. No obvious discrete modes of young, small fish corresponding to successful year classes entering the catch were observed either by Francis or in this study. However, this probably reflects lower catchability of younger, smaller (i.e., less than 50 cm fork length) blue moki by the commercial net and trawl gear sampled in this study and by the sampling gear used by Francis in the 1970s rather than recruitment failure then and now. Young blue moki are known to occur intertidally and subtidally over rocky reefs (Duffy 1988), with adults found in deeper water further offshore on the continental shelf (Anderson et al. 1998), suggesting reduced areal and vertical availability of younger, smaller fish
to commercial trawl and setnet gear. Presumably, this pattern is caused by some kind of ontogenic shift in habitat preference and distribution, but the dynamics are poorly understood at this time.

Francis (1981a) did not present age-frequency distributions, but did comment that the fish sampled in his study seemed to be fully recruited to the fisheries he sampled by about 60 cm in fork length, and from the length-at-age data he collected, at about 8 to 10 years of age. These results are consistent with the catches-at-length and catches-at-age calculated in this study, although the sampling gear and the spatial and temporal extent of sampling effort in this study are somewhat different from the gear and sampling scheme used by Francis (he did not sample trawl catches, for example). However, in any case, it appears that both the BT-TAR and SN-MOK commercial catches sampled in this study are based on a number of successful year classes with some evidence of particularly strong year classes entering and persisting in the catch. Our ability to identify and track year-classes in the catch-at-age is of course confounded by reader error, which in this study was moderate. Somewhat surprisingly, there do not appear to be any strong differences between the SN-MOK and BT-TAR (in- and out-season) catches-at-age for either of the fishing years sampled during this study. Observed age-frequency distributions are of course affected by the selectivity of the sampling gear. The shapes of the commercial setnet and trawl selectivity ogives for blue moki are unknown, but as gill- or setnets are quite selective (e.g., Hickford \& Schiel 1995, Hickford \& Schiel 1996, Millar \& Holst 1997, Dunn \& Paul 2000, Walker et al. 2005), typically capturing only some middle subset by length or by age of fish that encounter the gear, more marked differences were expected. However, if the commercial trawl gear is also efficient at retaining only a middle subset of fish, i.e., if very small and very large fish available to the trawl gear are not retained by the gear, perhaps because small (young) blue moki are too small to be retained by the codend mesh and large (old) blue moki are strong enough to out swim a typical trawl when towed at a typical fishing speed, as is the case for snapper (Pagrus auratus) in New Zealand (e.g., Gilbert et al. 2000, Harley et al. 2000, Maunder \& Starr 2000, Bentley et al. 2004), then the gear selectivities might be similar and similar catches-at-age might be expected. However, teasing this out is confounded by different spatial fishing patterns (at the level of statistical areas at least and presumably on finer spatial scales) between the fisheries, suggesting potentially different catchabilities between the fisheries.

The oldest blue moki reported by Francis was 33 years, compared with 43 years in this study, representing an increase in maximum observed longevity of some 10 years or 30% from his study to this. The natural mortality estimate given in the 2007 Plenary Report (Ministry of Fisheries Science Group 2007), 0.14 , is a function of the current best longevity estimate, and the increase in blue moki longevity reported in this study suggests that this should be revised to 0.10 accordingly. Both the Plenary Report estimate (0.14) and the revised estimate (0.10) were considered in the per-recruit analysis presented above, although the reference points and per-recruit isopleths were calculated assuming the revised value. The Plenary Report also states that blue moki stocks in New Zealand have a long catch history and are considered to have been seriously depleted by 1975. Although the average catch post-QMS (426 t , all QMAs, 1986-87 to 2006-07; Table 1), is less than half of the 1979 peak of 960 t , it is unlikely that the stock age-frequency distributions have returned to an unexploited or lightly exploited (i.e., an approximately equilibrium) state. Therefore, it is possible that the revised longevity (43 years) and natural mortality (0.10) estimates presented in this report may still underestimate true blue moki longevity and natural mortality.

4.2 Future market-sampling

The market-sampling programme carried out as part of this study was implemented in response to an information need identified by Langley \& Walker (2004) in their descriptive and standardised catch-per-unit-effort analysis of the ECNI moki fisheries. From the insights gained on the composition of the catch and the apparent status of the stock in this study and the synergy of these results and the results of the previous catch-rate analysis, we recommend that catch- or market-sampling of the blue moki fisheries should continue in the future. An assessment of the optimum frequency and design of future blue moki sampling programmes is beyond the scope of this report, but we do recommend that future
sampling programmes should be carried out for three not two years. This is because chance occurrence of anomalous patterns in fish distribution, fishing patterns, or in sampling effort in any given fishing year during a three-year sampling programme will affect a smaller fraction of the total results, increasing the chances of overall success. Three years also offers a better opportunity to develop and maintain a pool of suitable sampling staff, whether administrative and implementation responsibilities are assigned to a single, vertically integrated research service provider or not. We also note that the harvest level and thus the revenue that can be extracted from the fishery limits the scope and frequency with which future sampling programmes can be implemented, but once per decade, perhaps dependent on a trigger from a future standardised catch-rate analysis, seems sensible in advance of a proper consideration of optimum sampling frequency and design.

4.3 Implications of observed mortality estimates

Total mortality estimates were produced for the BT-TAR and SN-MOK fisheries off the ECNI for the 2004-05 and 2005-06 fishing years from which fishing mortality estimates for these fishing years were derived (0.06 and 0.08 for the BT-TAR and SN-MO`K fisheries respectively during 2004-05 and 0.03 for both fisheries during 2005-06 assuming age at full vulnerability of 8 years) in this study. However, fishing mortality estimates are of little value without reference fishing mortality values with which to compare the observed values. Given that no quantitative stock assessment model exists for blue moki off the ECNI at this time, a classical per-recruit analysis was carried out to produce reference fishing mortality values for comparison with the observed fishing mortality estimates.

Reference points $F_{\text {max }}$, the fishing mortality that maximises yield-per-recruit for a given age at full vulnerability, and $F_{0.1}$, the fishing mortality for a given assumed age at full vulnerability where the slope of the yield-per-recruit curve as a function of fishing mortality is $10 \%(0.1)$ of the slope of the curve at the origin, were calculated. Under the assumptions made in the per-recruit analysis, maximum yield-per-recruit is obtained by applying infinite fishing mortality at a "critical" age of 5.72 ages, and thus the tabulated $F_{\max }$ values calculated for assumed ages at full vulnerability of 6 years or more are infinite. However, fishing mortality at a level of $F_{\max }$ or greater corresponds to economic and growth overfishing, as the yield-per-recruit can be increased by decreasing fishing mortality, and can usefully be thought of as a level of fishing mortality to avoid, if possible ("cacometric" or "poorly measured" fishing, Clark (1985). The derivation and use of $F_{0.1}$ as a reference point was reviewed in some detail by Deriso (1987). The choice of the 0.1 factor is arbitrary, but $F_{0.1}$ is considered, at least theoretically, an economically efficient, risk-averse alternative to $F_{\max }$ ("eumetric" or "well measured" fishing, Clark (1985). It corresponds to a point on a given yield-per-recruit curve where the relative gain in yield-per-recruit as a function of fishing mortality is decreasing rapidly as $F_{\max }$ is approached. By definition, $F_{0.1}$ will always produce a lower yield-per-recruit than $F_{\max }$, but due to the decreasing relative gain in yield-per-recruit as fishing mortality increases, a disproportionally large increase in fishing mortality is required to move from $F_{0.1}$ to $F_{\max }$, requiring a disproportionally large increase in fishing effort in the real world, and thus in cost.

Having said all this, the observed fishing mortalities, regardless of the age at full vulnerability assumed, are all less than the corresponding $F_{0.1}$ estimates and are well to the left of the eumetric fishing line plotted on the yield-per-recruit isopleth surface. This appears to suggest, everything else being equal, that the blue moki stock supporting the BT-TAR and SN-MOK fisheries off the ECNI is not being over-fished and that yield could be increased by increasing fishing mortality further. Is this really the case? We should consider that per-recruit analysis can produce invalid results, leading to the calculation of invalid reference points, and thus leading to inappropriate management decisions if the assumptions made in the analysis have not been met. The classical per-recruit model presented by Beverton \& Holt (1957) and used in this analysis is a deterministic model that does not consider uncertainty in the model parameters (in its original form it is not a statistical model), does not consider
the stock-recruit relationship, and assumes knife-edge maturity and selectivity ogives, which, are oversimplifications of reality that may not address the full range of real population responses of ECNI blue moki to harvesting. The extent to which the lack of data from younger, smaller fish from which the length-at-age relationship assumed in the analysis was calculated has affected the results is unknown. It may be useful to collect otoliths from young, small blue moki and to update the length-at-age relationship presented and to test the sensitivity of the per-recruit analysis results to the revised length-at-age relationship.

Deriso (1987) goes on to discuss how $F_{0.1}$ can approximate F_{MSY}, the level of fishing mortality that supports the maximum sustainable yield (MSY), when recruitment is adequately described by a Ricker stock-recruitment function. No attempt has been made to derive a stock-recruitment relationship for the ECNI blue moki stock, or to explore the degree of stochasticity inherent in the relationship, but given that the observed fishing mortality estimates are all well to the left of the eumetric fishing line calculated in the per-recruit analysis given the assumptions made, it seems reasonable to assume, given these results, that current (2005-06) biomass is likely to be above the level that supports MSY. However, given the caveats discussed above, it would be premature to suggest a revised harvest limit without carrying out a quantitative stock assessment where current and historical biomass and yields are estimated and the full range of likely population responses of ECNI blue moki are explored. In the interim, it may be useful to generalise the selectivity, maturity, and other assumptions in the perrecruit analysis carried out and to explore the stochasticity in the results using Monte Carlo methods.

5. ACKNOWLEDGMENTS

We thank John and Pat Reid of the Area 2 Inshore Finfish Company Ltd and all staff of fishing companies who provided access to fish, landings data, or who were directly involved with data collection for their help with implementing the sampling programme. In particular, we thank Dion and John Muollo (Deep Blue Seafoods Ltd), Steve Keeves (Pacific Catch Ltd), and Vana, Mark, George, and John (John's Fish Market Ltd) and their staff for their help, without which the data gathered would be considerably more sparse. This project was funded by Ministry of Fisheries under project code MOK2003/01.

A small number of minor revisions and edits to a draft of the body of this report were made by Alistair Dunn before publication, following the death of Michael Manning (1973-2009).

6. REFERENCES

Anderson, O.F.; Bagley, N.W.; Hurst, J.; Francis, M.P.; Clark, M.R.; McMillan, P.J. (1998). Atlas of New Zealand fish and squid distributions from research bottom trawls. NIWA Technical Report 42. 303 p.

Beamish, R.J.; Fournier, D.A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38: 982-983.
Bentley, N.; Davies, N.M.; McNeill, S.E. (2004). A spatially-explicit model of the snapper (Pagrus auratus) fishery in SNA 1. New Zealand Fisheries Assessment Report 2004/26. 64 p.
Beverton, R.J.H.; Holt, S.J. (1957). On the dynamics of exploited fish populations. Fishery Investigations, Series II, Sea Fisheries, Volume 19. 533 p.
Beverton, R.J.H.; Holt, S.J. (1964). Tables of yield functions for fishery assessment. FAO Fisheries Technical Paper 38.49 p.
Blackwell, R.G.; Gilbert, D.J. (2002). Age composition of commercial snapper landings in Tasman/Golden Bay (SNA 7), 2000-01. New Zealand Fisheries Assessment Report 2002/49. 17 p.
Bull, B.; Dunn, A. (2002). Catch-at-age user manual v1.06.2002/09/12. NIWA Internal Report 114. 23 p. (Unpublished report held by the NIWA Library, Wellington.)

Bull, B.; Gilbert, D.J. (2001). Catch-at-age sampling. New Zealand Fisheries Assessment Report 2001/53. 19 p.

Campana, S.E.; Annand, M.C.; McMillan, J.I. (1995). Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124: 131-138.
Chang, W.Y.B. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39: 1208-1210.
Christensen, J.M. (1964). Burning of otoliths, a technique for age determination of soles and other fish. Journal Conseil Permanent International pour l'Exploration de la Mer 29: 73-81.
Clark, C.W. (1985). Bioeconomic modelling and fisheries management. Wiley-Interscience, New York. 304 p.
Deriso, R.B. (1987). Optimal $F_{0.1}$ criteria and their relationship to maximum sustainable yield. Canadian Journal of Fisheries and Aquatic Sciences 44: 339-348.
Duckworth, K. (2002). Catch-effort reference library. Version 1.0. CD-ROM available from Ministry of Fisheries, Feltex House, 156-158 Victoria Street, Wellington.
Duffy, C.A.J. (1988). The fish fauna of subtidally fringing macroalgae sampled at Wairepo Flats, Kaikoura: species composition, distribution, and abundance. 136 p . (Unpublished MSc thesis held by the University of Canterbury library, Christchurch.)
Dunn, A.; Paul, L.J. (2000). Estimates of butterfish (Odax pullus) setnet selectivity. New Zealand Fisheries Assessment Report 2000/2. 22 p.
Efron, B.; Tibshirani, R. (1993). An introduction to the bootstrap. Chapman \& Hall, New York. 436 p.
Fisher, D.O.; Mackay, K.A. (2000). Database documentation: market. NIWA Internal Report 93.37 p. (Unpublished report held by the NIWA Library, Wellington.)
Fletcher, R.I. (1987). Three optimization problems of year-class analysis. Conseil Permanent International pour l'Exploration Mer. 43: 169-176.
Francis, M.P. (1979). A biological basis for the management of New Zealand blue moki (Latridopsis ciliaris) and smoothhound (Mustelus lenticulatus) fisheries. 208 p. (Unpublished MSc thesis, Joint Centre for Enivornmental Sciences, Lincoln University and University of Canterbury, Christchurch.)
Francis, M.P. (1981a). Age and growth of moki, Latridopsis ciliaris (Teleostei: Latridae). New Zealand Journal of Marine and Freshwater Research 15: 47-49.
Francis, M.P. (1981b). Spawning migration of moki (Latridopsis ciliaris) off eastern New Zealand. New Zealand Journal of Marine and Freshwater Research 15: 267-273.
Francis, R.I.C.C. (1989). A standard approach to biomass estimation from bottom trawl surveys. New Zealand Fisheries Assessment Research Document 89/3. 4 p. (Unpublished report held by the NIWA Library, Wellington.)
Francis, R.I.C.C. (2002). Estimating catch at age in the Chatham Rise hoki fishery. New Zealand Fisheries Assessment Report 2002/9. 22 p.
Francis, R.I.C.C.; Paul, L.J.; Mulligan, K.P. (1992). Ageing of adult snapper (Pagrus auratus) from otolith annual ring counts: validation by tagging and oxytetracycline injection. Australian Journal of Marine and Freshwater Research 43: 1069-1089.
Gilbert, D.J.; McKenzie, J.R.; Davies, N.M.; Field, K.D. (2000). Assessment of the SNA 1 stocks for the 1999-2000 fishing year. New Zealand Fisheries Assessment Report 2000/38. 52 p.
Harley, S.J.; Millar, R.B.; McArdle, B.H. (2000). Estimating unaccounted fishing mortality using selectivity data: an application in the Hauraki Gulf snapper (Pagrus auratus) fishery in New Zealand. Fisheries Research 45: 167 en 178.
Hickford, M.J.H.; Schiel, D.R. (1995). Catch vrs count: effects of gill-netting on reef fish populations in southern New Zealand. Journal of Experimental Marine Biology and Ecology 188: 215-232.
Hickford, M.J.H.; Schiel, D.R. (1996). Gillnetting in southern New Zealand: duration effects of sets and entanglement modes of fish. Fishery Bulletin 94: 669-677.
Jensen, A.L. (1985). Comparison of catch-curve methods for estimation of mortality. Transactions of the American Fisheries Society 114: 743-747.
Langley, A.D.; Walker, N. (2004). Characterisation of the blue moki (Latridopsis ciliaris) fishery and recommendations for future monitoring of the MOK 1 fishstock. New Zealand Fisheries Assessment Report 2004/33. 77 p.
Mackay, K.A.; George, K. (2000). Database documentation: age. NIWA Internal Report 68. 35 p. (Unpublished report held by the NIWA Library, Wellington.)
Manning, M.J.; Hanchet, S.M.; Stevenson, M.L. (2004). A description and analysis of New Zealand's spiny dogfish (Squalus acanthias) fisheries and recommendations on appropriate methods to monitor the status of the stocks. New Zealand Fisheries Assessment Report 2004/61. 135 p.

Manning, M.J.; Stevenson, M.L.; Horn, P.L. (2008). The composition of the commercial and research tarakihi (Nemadactylus macropterus) catch off the west coast of the South Island (TAR 7) during the 2004-05 fishing year. New Zealand Fisheries Assessment Report 2008/17. 65 p.
Manning, M.J.; Sutton, C.P. (2004). Age and growth of giant stargazer, Kathetostoma giganteum, from the west coast of the South Island (STA 7). New Zealand Fisheries Assessment Report 2004/17. 60 p.
Maunder, M.; Starr, P.J. (2000). Bayesian assessment of the SNA 1 snapper (Pagrus auratus) stock on the north-east coast of New Zealand. New Zealand Journal of Marine and Freshwater Research 35: 87-110.
Millar, R.B.; Holst, R. (1997). Estimation of gillnet and hook selectivity using log-linear models. ICES Journal of Marine Science 54: 471-477.
Ministry of Fisheries Science Group (2006). Report from the Fishery Assessment Plenary, May 2006: stock assessments and yield estimates. 875 p. (Unpublished report held by the Ministry of Fisheries, Wellington.)
Ministry of Fisheries Science Group (2007). Report from the Fishery Assessment Plenary, May 2007: stock assessments and yield estimates. 875 p. (Unpublished report held by the Ministry of Fisheries, Wellington.)
Ministry of Fisheries Science Group (2008). Report from the Fishery Assessment Plenary, May 2008: stock assessments and yield estimates. 990 p. (Unpublished report held by the Ministry of Fisheries, Wellington.)
Quinn II, T.J.; Deriso, R.B. (1999). Quantitative fish dynamics. Oxford University Press, New York, NY, 542 p.
R Development Core Team (2005). R: A language and environment for statistical computing. Version R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
Ricker, W.E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191: 29-73.
Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences 38: 1128-1140.
Smith, P.J.; Gaffney, P.M.; Roberts, C.D. (2003). Phylogenetic relationships of the silver trumpeter Latris pacifica (Teleostei, Percomorpha, Latridae) based on allozymes and mitochondrial cytochrome b sequences. Journal of the Royal Society of New Zealand 33: 755-767.
Smith, P.J.; Roberts, C.D.; Benson, P.G. (2001). Biochemical-genetic and meristic evidence that blue and copper moki (Teleostei: Latridae: Latridopsis) are discrete species. New Zealand Journal of Marine and Freshwater Research 35: 387-395.
Stevenson, M.L.; Horn, P. (2004). Growth and age structure of tarakihi (Nemadactylus macropterus) off the west coast of the South Island. New Zealand Fisheries Assessment Report 2004/11. 23 p.
Sutton, C.P. (ed.) (2002). Biological data collection manual for Ministry of Fisheries observers. Unpublished technical manual held by Ministry of Fisheries, Wellington, 476 p.
Walker, T.I.; Hudson, R.J.; Gason, A.S. (2005). Catch evaluation of target, by-product and by-catch species taken by gillnets and longlines in the shark fishery of South-eastern Australia. Journal of Northwest Atlantic Fisheries Science 35: 505-530.

APPENDIX A:CROSS TABULATIONS OF THE GROOMED AND MERGED LANDED CATCH

Table A1: Distribution of catch (kg) by fishery (BT-TAR, SN-MOK, Other; see Section 2.2 for definitions), fishing year (1989-90 to 2005-06; "1990" = 1989-90), and month of the fishing year (October to September). Catches are calculated from the groomed and merged landed catch rescaled to the QMS values given in Table 1.

BT-TAR fishery

Fishing year													Month
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1990	3300	3423	2083	3672	2661	736	253	966	2903	2023	1359	9249	32627
1991	8182	6228	1797	2151	1782	1039	1517	4306	2218	5033	721	18017	52992
1992	8636	9922	4529	1881	3091	1635	1488	3241	3899	2420	1060	6287	48090
1993	5928	7153	2813	1686	320	883	611	1816	2703	3685	144	788	28528
1994	10116	6636	4736	585	799	426	1041	2170	4073	2168	1114	4896	38760
1995	13265	8696	8423	3792	3532	1149	4507	4376	4868	3253	1622	5494	62978
1996	9332	8828	2141	1437	1596	995	2110	2166	4485	3613	1274	5878	43853
1997	9335	7011	1272	1422	1531	4084	794	2261	2738	2550	1029	4561	38588
1998	7219	6529	3118	4460	2708	1717	4175	3980	3139	2759	1811	3969	45584
1999	6264	7023	6052	3739	1901	1673	1812	1991	4471	5380	3653	13752	57711
2000	5950	4144	5155	2364	2352	2683	1009	2143	4300	3626	1290	2730	37746
2001	6757	3641	2222	2398	2721	2202	1375	1817	2001	7782	1133	3888	37938
2002	3414	1295	2196	3293	3201	2085	2093	3590	3466	5966	783	2552	33936
2003	3517	3836	3510	2249	1437	1417	783	1095	1352	3505	1977	6588	31266
2004	5468	2282	1732	1589	742	2401	3474	2462	4435	4867	944	9907	40302
2005	4908	3299	4391	2959	1977	2143	1256	2904	4404	7283	5855	21414	62793
2006	5118	5916	4304	1386	834	1600	1036	4559	9681	9253	7792	17485	68962
Total	118142	97455	60495	41277	33278	28608	29831	45739	64742	73457	32892	134315	760232

SN-MOK fishery

Fishing year	Oc	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Month
													Total
1990	610	285	24	897	2108	525	399	3076	5110	3052	1016	2860	19962
1991	2246	190	117	207	88	131	570	3585	3707	7794	1480	5337	25453
1992	2269	121	90	266	193	357	1303	2055	3166	2289	757	3081	15947
1993	3799	418	767	520	441	1236	2075	2476	3778	4755	530	190	20985
1994	4551	993	421	594	350	359	1040	1514	182	1801	1594	2987	16387
1995	4035	1232	144	326	865	110	138	2198	1583	1621	4534	5807	22593
1996	2464	390	163	146	917	755	453	2892	1403	7644	13017	12082	42325
1997	927	926	1895	2243	2229	845	1099	3750	2184	3973	5065	14751	39887
1998	5896	1597	1854	1933	1497	1930	516	2845	1663	2217	100	13848	35897
1999	703	280	664	424	237	288	90	2084	1662	2972	6598	12647	28649
2000	4023	753	310	768	644	146	1834	2503	2469	1963	5930	11846	33191
2001	7340	1405	861	251	1532	931	39	1762	10797	11047	1412	35391	72769
2002	7415	177	681	720	572	1277	347	2498	12648	20244	16391	22236	85205
2003	8841	162	494	506	666	498	57	7224	21984	21784	16649	5742	84608
2004	6464	-	59	1137	319	518	2157	7010	19024	20016	8887	10119	75710
2005	1469	305	688	845	1183	907	-	3348	9538	12817	14934	44552	90585
2006	2930	-	-	107	30	68	635	15493	15579	17517	6510	24304	83174
Total	9538	9506	12101	14170	11071	12562	64608	110461	137494	103249	222379	772048	151677

Table A1: (continued).

Table A2: Distribution of catch (kg) by statistical area and fishing year (1989-90 to 2005-06; "1990" = 1989-90). Catches are calculated from the groomed and merged landed catch rescaled to the QMS values given in Table 1. -, no catch recorded.

Table A3: Distribution of catch (kg) by fishing method and fishing year (1989-90 to 2005-06; "1990" $=1989-90$). Catches are calculated from the groomed and merged landed catch rescaled to the QMS values given in Table 1.

Fishing year	Fishing method										
	BLL	BPT	BT	DS	MW	RLP	SLL	SN	T	Other	Total
1990	116	40	49172	-	17637	118	-	33701	62	154	101000
1991	64	62	78979	-	20	90	0	52671	30	84	132000
1992	56	6	92396	-	45	415	-	49420	101	60	142500
1993	258	3	63659	-	214	76	121	79862	231	77	144500
1994	30	753	93845	7	13438	62	-	78745	57	65	187000
1995	601	53	124400	2	18329	38	777	64681	70	47	209000
1996	161	7	110928	127	23579	9	-	82593	85	11	217500
1997	28	5	110156	85	19387	23	-	74095	55	167	204000
1998	3089	4	96246	2	38706	1	25	69667	220	41	208000
1999	31	1	128422	107	22675	3	-	82620	132	9	234000
2000	109	695	94089	39	1999	3	64	93466	18	19	190500
2001	79	281	96150	867	429	16	420	111518	63	178	210000
2002	133	-	72794	206	606	47	160	108358	19	176	182500
2003	6	11	89790	11	299	81	202	99543	2	55	190000
2004	28	110	87976	22	201	116	97	97338	2	110	186000
2005	9	4	99576	33	126	220	-	108913	12	107	209000
2006	48	4	103031	4	63	177	-	100548	12	114	204000
Total	5371	1978	1594832	1463	171106	1439	1869	1370782	1220	1440	3151500

Table A4: Distribution of catch (kg) by fishing method and fishing year (1989-90 to 2005-06; "1990" $=1989-90$). Catches are calculated from the groomed and merged landed catch rescaled to the QMS values given in Table 1.

Fishing year	BAR	BUT	GUR	HOK	MOK	SNA	SPO	TAR	TRE	WAR	Target species	
											Other	Total
1990	4917	909	3630	18503	20688	3173	730	33190	1137	8343	5780	101000
1991	5300	1281	8060	940	26206	1922	1261	54361	2594	22159	7915	132000
1992	1322	1716	25292	820	16066	2757	2324	53300	6166	17924	14812	142500
1993	4313	1488	18716	1281	21253	1547	4889	35545	6648	40586	8235	144500
1994	6640	1659	17041	4079	31489	3675	4105	58048	8205	43116	8943	187000
1995	5838	1653	15795	21514	23753	1626	2857	75868	7802	33650	18644	209000
1996	6846	2698	14730	27922	43916	5316	2679	60783	4741	28899	18970	217500
1997	8763	3162	20786	3746	62868	1607	3660	51712	4714	23033	19949	204000
1998	12557	1747	15134	4197	78313	2052	4775	48649	5046	25599	9931	208000
1999	16042	2617	22708	1370	53631	3212	4664	65629	2526	48248	13353	234000
2000	7736	2037	19182	2929	41176	2223	5373	42509	2754	57554	7027	190500
2001	5584	3228	19532	366	78440	1611	5671	38950	4994	39608	12016	210000
2002	2647	1205	18523	499	88538	1542	9633	34390	2082	16413	7028	182500
2003	3905	1520	21752	141	91688	2509	3609	32128	1418	14156	17175	190000
2004	5708	1939	17808	468	78499	4016	7999	40420	3103	16253	9786	186000
2005	2209	2300	17471	94	92702	2542	2674	63502	1006	16669	7832	209000
2006	307	1664	20486	35	85671	2551	2885	69652	909	13671	6169	204000
Total	103118	32879	294491	95667	921132	44014	68837	860928	67065	467363	196007	3151500

Table A5: Distribution of catch (kg) by fishing method (BT, MW, SN, Other), fishing year (1989-90 to 2005-06; "1990" = 1989-90), target species (GUR, HOK, MOK, TAR, WAR, Other) and QMA subregion (inside or outside ECNI). Catches are calculated from the groomed and merged landed catch rescaled to the QMS values given in Table 1.

Fishing method	Fishing year	ECNI						Other					
		GUR	HOK	MOK	TAR	WAR	Other	GUR	HOK	MOK	TAR	WAR	Other
BT	1990	7183	396	1381	65254	1648	19970	6	1336	-	239	1	931
	1991	15862	1856	1050	105983	5890	25658	25	-	-	815	50	770
	1992	49734	1117	157	96180	8932	23885	49	1	-	4065	2	671
	1993	35709	2129	497	57057	8424	21418	61	24	-	341	2	1656
	1994	32172	7922	1230	77520	11922	41490	155	28	-	13737	11	1503
	1995	30811	6440	2298	125956	16577	49907	171	0	-	11331	3263	2046
	1996	28375	8339	3171	87706	20272	53716	151	20	-	14163	39	5904
	1997	40298	6515	8041	77176	10390	50754	701	15	-	20905	22	5494
	1998	29383	8295	5391	91168	5726	40024	444	12	-	3147	36	8865
	1999	44149	2618	4705	115421	11373	57583	448	49	-	14877	443	5179
	2000	37354	2004	14487	75491	17092	28734	699	1	-	9298	307	2709
	2001	36808	534	6977	75876	26374	32769	344	17	3702	1904	1181	5812
	2002	35755	157	6193	67871	13317	18879	611	0	355	844	30	1577
	2003	42435	175	13857	62531	13391	39857	347	1	-	1162	226	5597
	2004	34166	788	5578	80603	15289	29813	978	9	-	132	1155	7440
	2005	34255	79	3370	125586	12314	16818	643	2	724	1094	1178	3089
	2006	40723	40	4815	137925	4151	11985	224	7	144	1307	1886	2856
	Total	570933	52701	81700	1520464	201942	573359	5947	1552	4596	103868	9665	62937

Fishing method	Fishing year	ECNI						Other					
		GUR	HOK	MOK	TAR	WAR	Other	GUR	HOK	MOK	TAR	WAR	Other
MW	1990	-	35274	-	-	-	0	-	-	-	-	-	-
	1991	-	24	-	-	-	17	-	-	-	-	-	-
	1992	-	46	-	-	-	45	-	-	-	-	-	-
	1993	-	356	-	-	5	66	-	-	-	-	-	-
	1994	-	208	26576	-	-	92	-	-	-	-	-	-
	1995	-	36567	-	42	-	48	-	-	-	-	-	1
	1996	-	46998	-	-	-	160	-	1	-	-	-	-
	1997	-	750	37876	-	-	149	-	0	-	-	-	-
	1998	-	86	62928	-	-	53	-	0	14345	-	-	-
	1999	-	73	44959	-	-	318	-	0	0	-	-	-
	2000	-	3850	-	3	-	143	-	3	-	-	-	0
	2001	-	178	-	0	-	678	-	2	-	-	-	-
	2002	-	841	-	-	0	371	-	-	-	-	-	-
	2003	-	104	-	0	-	492	-	1	-	-	-	0
	2004	-	135	-	-	0	257	-	2	-	-	-	6
	2005	-	105	-	-	-	145	-	1	-	-	0	1
	2006	-	23	-	-	-	102	-	1	-	-	-	0
	Total	0	135747	186774	48	5	3044	0	10	16575	0	0	8

Fishing method	Fishing year	ECNI						Other					
		GUR	HOK	MOK	TAR	WAR	Other	GUR	HOK	MOK	TAR	WAR	Other
SN	1990	54	-	39923	821	14099	7047	14	-	71	-	939	4435
	1991	180	-	50905	1849	36113	9469	26	-	458	7	2265	4069
	1992	678	476	31894	6351	24418	26250	117	-	82	4	2497	6074
	1993	1603	52	41969	13688	70339	23965	52	-	26	4	2402	5623
	1994	238	-	32774	24809	71873	17566	51	-	2398	-	2426	5355
	1995	502	21	45186	14378	45036	17700	103	-	15	24	1693	4703
	1996	308	486	84651	19698	35332	17243	241	-	11	-	2154	5061
	1997	308	211	79774	5319	32839	18056	80	-	0	13	2814	8776
	1998	287	-	71794	2878	38135	16272	152	-	2168	104	1213	6329
	1999	411	-	57298	916	82729	15361	196	-	301	45	1679	6304
	2000	125	-	66381	216	95814	11095	80	-	1481	-	1857	9882
	2001	155	-	145538	80	49733	17176	57	-	663	-	1898	7736
	2002	259	-	170410	64	16934	18702	18	-	51	-	2539	7739
	2003	692	-	169215	562	13027	7918	9	-	304	-	1665	5694
	2004	410	-	151419	92	14437	22548	4	-	-	-	1623	4142
	2005	24	-	181170	257	17130	12933	10	-	135	2	2715	3450
	2006	-	-	166348	73	20341	7473	6	-	31	-	964	5860
	Total	6267	1323	1544097	96959	681770	267167	1281	0	8380	223	33169	100930

					Other
GUR	HOK	MOK	TAR	WAR	Other
4	-	-	65	-	366
24	-	-	68	-	124
4	-	-	0	-	42
6	-	-	0	-	350
2	-	-	0	-	77
2	-	-	0	-	160
12	-	-	-	-	126
14	-	-	11	-	74
-	-	-	0	-	46
-	-	-	-	13	28
28	-	-	8	-	78
40	-	-	0	8	159
0	-	-	0	6	135
0	-	-	0	3	455
54	-	-	0	3	411
9	-	-	1	1	522
14	-	-	-	-	417
203	0	0	150	32	3,454

APPENDIX B:ESTIMATED SCALED NUMBERS AT LENGTH AND AT AGE DURING THE 2004-05 AND 2005-06 FISHING YEARS

Table B1: Blue moki scaled numbers at length in the BT-TAR and SN-MOK fisheries in MOK 1(E) by sex and stratum (BT-TAR-IN, BT-TAR-OUT, SN-MOK-OUT, pooled across all strata) assumed during the 2004-05 fishing year.

Length	BT-TAR-IN						SN-MOK-IN					
		Male	Female		Total		Male		Female		Total	
	N	c.v.										
≤ 40	0	-	0	-	0	-	0	-	0	-	0	-
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	0	-	0	-
43	78	1.418	66	1.418	144	0.984	157	1.412	0	-	157	1.412
44	135	1.400	0	-	135	1.400	0	-	0	-	0	-
45	0	-	0	-	0	-	66	1.464	0	-	66	1.464
46	19	1.474	0	-	19	1.474	0	-	0	-	0	-
47	274	0.932	138	1.336	412	0.833	98	1.375	0	-	98	1.375
48	406	0.916	0	-	406	0.916	961	0.505	72	1.393	1033	0.460
49	418	0.905	0	-	418	0.905	1354	0.477	309	0.952	1664	0.467
50	490	0.717	308	0.863	798	0.561	732	0.538	186	0.903	919	0.441
51	516	0.673	677	0.599	1193	0.407	2039	0.497	509	0.620	2548	0.407
52	360	0.724	821	0.584	1181	0.458	2033	0.370	712	0.578	2745	0.293
53	677	0.589	102	1.211	779	0.554	1548	0.336	852	0.454	2400	0.265
54	910	0.540	339	0.773	1250	0.413	1932	0.301	534	0.607	2466	0.257
55	1118	0.376	936	0.448	2054	0.295	2162	0.357	1289	0.338	3451	0.256
56	1232	0.600	1127	0.413	2358	0.429	3594	0.270	770	0.466	4364	0.230
57	1444	0.345	1057	0.396	2502	0.290	2054	0.322	960	0.469	3014	0.252
58	606	0.594	595	0.560	1201	0.335	1714	0.302	857	0.407	2572	0.226
59	1239	0.424	1256	0.398	2495	0.273	1463	0.428	1304	0.436	2767	0.284
60	1312	0.346	977	0.421	2289	0.237	1589	0.387	1537	0.318	3126	0.224
61	115	1.023	832	0.455	948	0.421	1198	0.387	894	0.399	2092	0.271
62	800	0.434	1288	0.394	2089	0.283	1878	0.291	650	0.530	2527	0.258
63	672	0.488	746	0.488	1418	0.350	1072	0.431	1065	0.399	2137	0.312
64	418	0.704	811	0.475	1230	0.391	1840	0.322	660	0.533	2500	0.275
65	329	0.823	312	0.739	642	0.517	1238	0.449	585	0.549	1823	0.310
66	201	1.015	587	0.574	788	0.566	572	0.570	497	0.566	1069	0.393
67	520	0.693	544	0.572	1064	0.385	294	0.678	453	0.700	747	0.482
68	0	-	661	0.580	661	0.580	463	0.712	420	0.664	883	0.488
69	161	0.975	425	0.607	586	0.490	66	1.415	481	0.650	547	0.586
70	19	1.472	306	0.694	325	0.661	164	0.984	356	0.725	519	0.618
71	0	-	289	0.764	289	0.764	0	-	318	0.710	318	0.710
72	0	-	19	1.488	19	1.488	0	-	0	-	0	-
73	0	-	103	0.965	103	0.965	0	-	192	0.931	192	0.931
74	0	-	57	1.107	57	1.107	0	-	72	1.420	72	1.420
75	0	-	170	1.303	170	1.303	0	-	0	-	0	-
76	0	-	0	-	0	-	0	-	130	1.346	130	1.346
77	0	-	66	1.432	66	1.432	0	-	0	-	0	-
78	0	-	0	-	0	-	68	1.404	0	-	68	1.404
79	0	-	0	-	0	-	0	-	0	-	0	-
80	0	-	0	-	0	-	0	-	0	-	0	-
81	0	-	0	-	0	-	0	-	0	-	0	-
82	0	-	0	-	0	-	0	-	0	-	0	-
83	0	-	0	-	0	-	0	-	0	-	0	-
84	0	-	0	-	0	-	0	-	0	-	0	-
≥ 85	0	-	0	-	0	-	0	-	0	-	0	-

Table B1: (continued)

Length	BT-TAR-OUT						Pooled					
	Male		Female		Total		Male		Female		Total	
	N	c.v.										
≤ 40	0	-	0	-	0	-	0	-	0	-	0	-
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	0	-	0	-
43	0	-	222	1.403	222	1.403	235	1.069	288	1.156	522	0.803
44	0	-	0	-	0	-	135	1.400	0	-	135	1.400
45	0	-	0	-	0	-	66	1.464	0	-	66	1.464
46	0	-	0	-	0	-	19	1.474	0	-	19	1.474
47	0	-	444	1.199	444	1.199	371	0.773	583	0.999	954	0.711
48	235	1.249	235	1.253	470	1.013	1602	0.420	306	0.985	1909	0.392
49	0	-	222	1.377	222	1.377	1773	0.422	531	0.830	2304	0.401
50	470	1.024	692	0.647	1162	0.580	1692	0.407	1187	0.461	2879	0.306
51	235	1.259	28	2.331	263	1.009	2790	0.397	1214	0.419	4004	0.291
52	235	1.247	1136	0.649	1371	0.544	2628	0.323	2669	0.371	5297	0.232
53	235	1.246	0	-	235	1.246	2460	0.289	954	0.426	3414	0.239
54	692	0.653	290	1.018	982	0.502	3534	0.249	1163	0.442	4698	0.202
55	705	0.915	457	0.832	1162	0.581	3984	0.269	2682	0.263	6666	0.189
56	0	-	927	0.597	927	0.597	4826	0.252	2823	0.283	7649	0.200
57	927	0.590	970	0.540	1896	0.359	4425	0.219	2987	0.269	7412	0.168
58	0	-	553	0.815	553	0.815	2320	0.270	2005	0.324	4325	0.191
59	1162	0.573	1661	0.393	2823	0.298	3864	0.273	4222	0.239	8085	0.168
60	235	1.285	955	0.519	1189	0.515	3136	0.259	3468	0.232	6604	0.161
61	470	1.018	55	2.214	525	0.817	1783	0.363	1782	0.320	3565	0.229
62	470	1.003	540	0.747	1010	0.495	3148	0.248	2478	0.303	5626	0.181
63	222	1.389	540	0.743	762	0.691	1966	0.337	2351	0.301	4317	0.232
64	0	-	222	1.385	222	1.385	2259	0.295	1693	0.368	3952	0.228
65	0	-	0	-	0	-	1568	0.392	897	0.439	2464	0.265
66	0	-	28	2.340	28	2.340	773	0.497	1112	0.406	1885	0.331
67	0	-	250	1.170	250	1.170	814	0.507	1247	0.434	2061	0.303
68	235	1.250	28	2.340	263	1.003	698	0.621	1109	0.440	1807	0.354
69	235	1.271	28	2.310	263	1.023	462	0.722	933	0.444	1396	0.364
70	235	1.259	0	-	235	1.259	417	0.768	662	0.507	1079	0.439
71	0	-	0	-	0	-	0	-	607	0.512	607	0.512
72	0	-	28	2.400	28	2.400	0	-	46	1.795	46	1.795
73	0	-	222	1.352	222	1.352	0	-	517	0.733	517	0.733
74	0	-	0	-	0	-	0	-	128	0.910	128	0.910
75	0	-	0	-	0	-	0	-	170	1.303	170	1.303
76	0	-	0	-	0	-	0	-	130	1.346	130	1.346
77	0	-	0	-	0	-	0	-	66	1.432	66	1.432
78	0	-	0	-	0	-	68	1.404	0	-	68	1.404
79	0	-	0	-	0	-	0	-	0	-	0	-
80	0	-	0	-	0	-	0	-	0	-	0	-
81	0	-	0	-	0	-	0	-	0	-	0	-
82	0	-	0	-	0	-	0	-	0	-	0	-
83	0	-	0	-	0	-	0	-	0	-	0	-
84	0	-	0	-	0	-	0	-	0	-	0	-
≥ 85	0	-	0	-	0	-	0	-	0	-	0	-

Table B2: Blue moki scaled numbers at length in the BT-TAR and SN-MOK fisheries in MOK 1(E) by sex and stratum (BT-TAR-IN, BT-TAR-OUT, SN-MOK-OUT, pooled across all strata) assumed during the 2005-06 fishing year.

Length	BT-TAR-IN						SN-MOK-IN					
		Male	Female		Total		Male		Female		Total	
	N	c.v.										
≤ 40	0	-	0	-	0	-	0	-	23	1.469	23	1.469
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	0	-	0	-
43	215	0.859	0	-	215	0.859	0	-	0	-	0	-
44	0	-	0	-	0	-	0	-	0	-	0	-
45	486	0.893	0	-	486	0.893	44	1.430	0	-	44	1.430
46	389	1.002	108	1.369	496	0.809	49	1.386	0	-	49	1.386
47	418	0.925	148	1.056	566	0.768	0	-	0	-	0	-
48	778	0.861	271	1.377	1048	0.868	0	-	113	1.373	113	1.373
49	387	0.658	179	1.331	566	0.528	358	0.581	93	1.402	451	0.536
50	1199	0.466	40	1.462	1239	0.449	311	0.735	119	1.232	430	0.749
51	367	0.715	108	1.390	474	0.688	864	0.498	163	0.835	1026	0.446
52	393	0.652	499	0.588	892	0.450	477	0.568	262	0.782	739	0.463
53	890	0.575	562	0.612	1452	0.499	967	0.485	703	0.500	1670	0.278
54	1701	0.425	353	0.719	2054	0.403	1400	0.336	1607	0.296	3007	0.239
55	865	0.526	346	0.716	1211	0.438	960	0.459	516	0.618	1475	0.365
56	1280	0.412	1360	0.456	2640	0.329	1231	0.360	961	0.467	2192	0.330
57	1644	0.423	1073	0.615	2717	0.416	1223	0.390	852	0.421	2075	0.280
58	897	0.575	583	0.658	1480	0.347	419	0.718	1833	0.270	2252	0.247
59	1054	0.484	991	0.512	2045	0.340	1316	0.348	1353	0.329	2669	0.251
60	872	0.574	1389	0.447	2261	0.361	1368	0.460	972	0.333	2340	0.298
61	1604	0.526	872	0.470	2476	0.335	1333	0.332	1408	0.298	2740	0.211
62	864	0.695	616	0.848	1480	0.493	1192	0.423	910	0.459	2102	0.288
63	380	0.784	1266	0.451	1646	0.363	543	0.496	1039	0.354	1582	0.290
64	566	0.539	728	0.553	1294	0.416	405	0.617	1161	0.372	1566	0.334
65	344	0.820	540	0.920	883	0.799	600	0.612	1059	0.501	1659	0.332
66	982	0.559	357	1.104	1339	0.577	390	0.864	938	0.380	1329	0.394
67	107	1.049	650	0.566	757	0.486	492	0.692	748	0.470	1240	0.359
68	286	0.818	623	0.585	909	0.536	292	0.716	373	0.626	664	0.456
69	297	0.882	219	1.029	516	0.731	256	0.747	367	0.648	623	0.537
70	179	1.310	118	1.375	297	0.876	134	1.002	443	0.557	577	0.531
71	0	-	40	1.434	40	1.434	133	0.961	0	-	133	0.961
72	0	-	0	-	0	-	0	-	322	0.606	322	0.606
73	67	1.399	40	1.444	107	1.036	0	-	0	-	0	-
74	0	-	179	1.305	179	1.305	0	-	120	0.937	120	0.937
75	0	-	0	-	0	-	0	-	0	-	0	-
76	0	-	40	1.412	40	1.412	0	-	113	1.336	113	1.336
77	0	-	0	-	0	-	0	-	78	1.378	78	1.378
78	0	-	0	-	0	-	130	1.376	0	-	130	1.376
79	0	-	0	-	0	-	0	-	65	1.390	65	1.390
80	0	-	0	-	0	-	0	-	0	-	0	-
81	0	-	0	-	0	-	0	-	0	-	0	-
82	0	-	0	-	0	-	0	-	78	1.380	78	1.380
83	0	-	40	1.456	40	1.456	0	-	0	-	0	-
84	0	-	0	-	0	-	0	-	0	-	0	-
≥ 85	0	-	0	-	0	-	0	-	0	-	0	-

Table B2: (continued)

Length	BT-TAR-OUT										Pooled	
		Male	Female		Total		Male		Female		Total	
	N	c.v.										
≤ 40	0	-	0	-	0	-	0	-	23	1.469	23	1.469
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	0	-	0	-
43	0	-	0	-	0	-	215	0.859	0	-	215	0.859
44	0	-	0	-	0	-	0	-	0	-	0	-
45	0	-	0	-	0	-	530	0.823	0	-	530	0.823
46	0	-	0	-	0	-	438	0.898	108	1.369	545	0.745
47	0	-	0	-	0	-	418	0.925	148	1.056	566	0.768
48	202	1.314	0	-	202	1.314	979	0.733	384	1.067	1363	0.708
49	247	1.083	0	-	247	1.083	993	0.422	271	0.986	1264	0.369
50	247	1.082	183	0.896	430	0.771	1757	0.378	342	0.665	2099	0.346
51	573	0.639	326	0.835	899	0.525	1804	0.340	596	0.570	2399	0.303
52	173	0.962	0	-	173	0.962	1044	0.387	760	0.464	1804	0.303
53	469	0.628	49	1.726	518	0.533	2326	0.325	1314	0.374	3640	0.250
54	124	1.318	251	1.018	375	0.690	3225	0.269	2212	0.269	5436	0.204
55	583	0.605	330	0.949	913	0.440	2408	0.304	1192	0.433	3599	0.237
56	794	0.517	133	1.153	928	0.466	3306	0.245	2454	0.317	5760	0.210
57	434	0.626	879	0.526	1313	0.354	3301	0.269	2804	0.314	6105	0.222
58	821	0.622	124	1.291	944	0.626	2136	0.369	2540	0.251	4676	0.203
59	750	0.495	548	0.525	1297	0.352	3120	0.251	2891	0.254	6011	0.176
60	133	1.141	326	0.834	459	0.650	2373	0.349	2687	0.282	5061	0.224
61	108	1.353	143	1.068	251	0.849	3044	0.312	2423	0.254	5467	0.189
62	596	0.617	853	0.627	1449	0.493	2652	0.324	2380	0.353	5032	0.234
63	10	2.453	326	0.830	335	0.778	933	0.431	2630	0.277	3563	0.222
64	251	1.005	346	0.769	597	0.524	1222	0.385	2236	0.287	3457	0.233
65	310	0.853	394	0.621	704	0.549	1254	0.422	1993	0.382	3246	0.294
66	124	1.284	375	0.667	499	0.549	1495	0.449	1671	0.345	3166	0.310
67	10	2.437	0	-	10	2.437	609	0.576	1398	0.362	2007	0.286
68	59	1.502	0	-	59	1.502	636	0.509	996	0.427	1632	0.350
69	0	-	0	-	0	-	553	0.586	586	0.561	1138	0.444
70	10	2.333	10	2.225	19	2.109	322	0.800	571	0.513	893	0.446
71	0	-	49	1.697	49	1.697	133	0.961	89	1.183	223	0.761
72	0	-	10	2.255	10	2.255	0	-	331	0.585	331	0.585
73	0	-	0	-	0	-	67	1.399	40	1.444	107	1.036
74	0	-	0	-	0	-	0	-	298	0.859	298	0.859
75	0	-	0	-	0	-	0	-	0	-	0	-
76	0	-	0	-	0	-	0	-	154	1.029	154	1.029
77	0	-	0	-	0	-	0	-	78	1.378	78	1.378
78	0	-	0	-	0	-	130	1.376	0	-	130	1.376
79	0	-	0	-	0	-	0	-	65	1.390	65	1.390
80	0	-	0	-	0	-	0	-	0	-	0	-
81	0	-	0	-	0	-	0	-	0	-	0	-
82	0	-	0	-	0	-	0	-	78	1.380	78	1.380
83	0	-	0	-	0	-	0	-	40	1.456	40	1.456
84	0	-	0	-	0	-	0	-	0	-	0	-
≥ 85	0	-	0	-	0	-	0	-	0	-	0	-

Table B3: Blue moki scaled numbers at age in the BT-TAR and SN-MOK fisheries in MOK 1(E) by sex and stratum (BT-TAR-IN, BT-TAR-OUT, SN-MOK-OUT, pooled across all strata) assumed during the 2004-05 fishing year.

Age	BT-TAR-IN						SN-MOK-IN					
		Male	Female		Total		Male		Female		Total	
	N	c.v.										
0	0	-	0	-	0	-	0	-	0	-	0	-
1	0	-	0	-	0	-	0	-	0	-	0	-
2	0	-	0	-	0	-	107	1.400	0	-	107	1.400
3	160	0.969	172	1.325	332	0.744	730	0.700	161	1.396	891	0.649
4	612	0.620	318	1.082	930	0.470	2221	0.410	400	0.689	2621	0.362
5	1262	0.431	693	0.534	1955	0.374	6933	0.337	1446	0.388	8379	0.308
6	680	0.528	754	0.485	1433	0.381	1960	0.409	932	0.472	2892	0.311
7	1091	0.398	1980	0.321	3072	0.221	3142	0.290	1388	0.373	4530	0.190
8	1575	0.370	913	0.534	2488	0.331	3341	0.318	1689	0.353	5030	0.232
9	1924	0.344	1149	0.447	3073	0.293	3147	0.257	1565	0.359	4712	0.193
10	1511	0.377	1177	0.406	2688	0.302	4757	0.174	3120	0.256	7877	0.148
11	1852	0.340	1447	0.362	3299	0.273	4130	0.283	1437	0.388	5567	0.206
12	461	0.786	661	0.564	1122	0.544	676	0.542	454	0.573	1130	0.394
13	431	0.688	341	0.742	772	0.542	489	0.693	228	1.017	717	0.536
14	279	0.924	159	0.960	438	0.634	434	0.634	431	0.682	865	0.516
15	243	0.916	264	0.950	507	0.668	586	0.585	455	0.633	1042	0.399
16	150	1.231	490	0.588	640	0.583	315	0.974	285	1.020	600	0.803
17	130	1.386	343	0.784	473	0.761	87	1.420	76	1.421	164	1.012
18	176	0.994	438	0.612	614	0.463	142	1.019	661	0.567	803	0.496
19	966	0.429	1498	0.328	2464	0.259	908	0.502	705	0.603	1614	0.378
20	574	0.631	796	0.473	1370	0.385	882	0.515	881	0.469	1763	0.330
21	387	0.660	196	0.911	583	0.587	75	1.405	462	0.688	537	0.615
22	93	1.440	246	0.860	338	0.711	513	0.577	273	0.807	786	0.475
23	41	1.455	294	0.793	335	0.701	151	1.216	311	0.715	462	0.610
24	149	1.326	589	0.605	737	0.503	477	0.833	306	0.712	783	0.574
25	176	0.994	194	0.971	369	0.683	339	0.772	351	0.760	690	0.498
26	0	-	287	0.741	287	0.741	337	0.743	253	0.774	590	0.560
27	93	1.413	404	0.888	496	0.731	0	-	0	-	0	-
28	0	-	0	-	0	-	0	-	0	-	0	-
29	0	-	172	1.312	172	1.312	0	-	0	-	0	-
30	0	-	0	-	0	-	0	-	79	1.416	79	1.416
31	0	-	0	-	0	-	0	-	0	-	0	-
32	0	-	0	-	0	-	0	-	0	-	0	-
33	0	-	0	-	0	-	0	-	0	-	0	-
34	0	-	0	-	0	-	0	-	0	-	0	-
35	0	-	0	-	0	-	0	-	0	-	0	-
36	0	-	0	-	0	-	0	-	0	-	0	-
37	0	-	0	-	0	-	0	-	0	-	0	-
38	0	-	0	-	0	-	0	-	0	-	0	-
39	0	-	0	-	0	-	0	-	0	-	0	-
40	0	-	0	-	0	-	0	-	0	-	0	-
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	20	1.522	20	1.522	0	-	0	-	0	-
43	0	-	0	-	0	-	0	-	0	-	0	-
44	0	-	0	-	0	-	0	-	0	-	0	-
≥ 45	0	_	0	-	0	-	0	-	0	-	0	-

Table B3: (continued)

Age	BT-TAR-OUT						Pooled					
	Male		Female		Total		Male		Female		Total	
	N	c.v.										
0	0	-	0	-	0	-	0	-	0	-	0	-
1	0	-	0	-	0	-	0	-	0	-	0	-
2	0	-	0	-	0	-	107	1.400	0	-	107	1.400
3	0	-	0	-	0	-	890	0.597	332	0.958	1223	0.510
4	664	1.052	332	1.291	996	0.962	3497	0.334	1050	0.565	4547	0.297
5	1328	0.903	2594	0.424	3923	0.415	9524	0.280	4734	0.271	14257	0.222
6	664	1.035	2319	0.401	2983	0.347	3304	0.330	4005	0.274	7308	0.202
7	898	0.668	692	0.884	1590	0.569	5131	0.229	4061	0.249	9192	0.151
8	996	0.933	664	1.028	1661	0.851	5913	0.247	3266	0.300	9179	0.204
9	566	0.790	594	0.706	1159	0.526	5636	0.200	3308	0.263	8944	0.156
10	664	1.028	2899	0.396	3563	0.290	6932	0.171	7196	0.209	14128	0.125
11	898	0.654	1188	0.486	2085	0.367	6879	0.212	4072	0.233	10951	0.152
12	0	-	262	1.200	262	1.200	1137	0.452	1377	0.417	2513	0.331
13	0	-	85	2.018	85	2.018	920	0.487	654	0.687	1573	0.408
14	0	-	233	1.404	233	1.404	713	0.529	823	0.586	1536	0.414
15	0	-	0	-	0	-	829	0.498	720	0.526	1548	0.350
16	0	-	332	1.273	332	1.273	465	0.762	1107	0.501	1572	0.452
17	0	-	0	-	0	-	218	1.007	419	0.685	637	0.617
18	0	-	0	-	0	-	317	0.705	1100	0.421	1417	0.347
19	332	1.245	318	1.134	650	0.680	2207	0.324	2521	0.315	4728	0.210
20	332	1.279	85	2.044	417	1.005	1788	0.390	1762	0.362	3550	0.252
21	0	-	332	1.287	332	1.287	462	0.599	989	0.540	1452	0.422
22	0	-	0	-	0	-	605	0.536	519	0.581	1124	0.391
23	0	-	262	1.184	262	1.184	192	0.996	867	0.540	1059	0.476
24	233	1.430	0	-	233	1.430	860	0.663	895	0.466	1754	0.392
25	0	-	28	2.343	28	2.343	514	0.606	573	0.586	1088	0.397
26	0	-	0	-	0	-	337	0.743	540	0.536	877	0.448
27	0	-	0	-	0	-	93	1.413	404	0.888	496	0.731
28	0	-	0	-	0	-	0	-	0	-	0	-
29	0	-	0	-	0	-	0	-	172	1.312	172	1.312
30	0	-	0	-	0	-	0	-	79	1.416	79	1.416
31	0	-	0	-	0	-	0	-	0	-	0	-
32	0	-	0	-	0	-	0	-	0	-	0	-
33	0	-	0	-	0	-	0	-	0	-	0	-
34	0	-	0	-	0	-	0	-	0	-	0	-
35	0	-	0	-	0	-	0	-	0	-	0	-
36	0	-	0	-	0	-	0	-	0	-	0	-
37	0	-	0	-	0	-	0	-	0	-	0	-
38	0	-	0	-	0	-	0	-	0	-	0	-
39	0	-	0	-	0	-	0	-	0	-	0	-
40	0	-	0	-	0	-	0	-	0	-	0	-
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	20	1.522	20	1.522
43	0	-	0	-	0	-	0	-	0	-	0	-
44	0	-	0	-	0	-	0	-	0	-	0	-
≥ 45	0	-	0	-	0	-	0	-	0	-	0	-

Table B4: Blue moki scaled numbers at age in the BT-TAR and SN-MOK fisheries in MOK 1(E) by sex and stratum (BT-TAR-IN, BT-TAR-OUT, SN-MOK-OUT, pooled across all strata) assumed during the 2005-06 fishing year.

Age	BT-TAR-IN						SN-MOK-IN					
		Male	Female		Total		Male		Female		Total	
	N	c.v.										
0	0	-	0	-	0	-	0	-	0	-	0	
1	0	-	0	-	0	-	0	-	0	-	0	-
2	193	1.019	0	-	193	1.019	0	-	26	1.513	26	1.513
3	542	0.791	100	1.302	642	0.709	0	-	0	-	0	-
4	1296	0.580	491	0.801	1787	0.532	787	0.524	447	0.663	1234	0.482
5	444	0.719	636	0.628	1080	0.492	359	0.646	204	0.836	564	0.554
6	3028	0.423	1651	0.546	4679	0.348	2778	0.369	2707	0.325	5486	0.270
7	884	0.539	810	0.691	1695	0.477	1183	0.428	1258	0.381	2441	0.311
8	1059	0.388	1724	0.380	2784	0.258	1090	0.388	1415	0.397	2504	0.293
9	1375	0.418	773	0.580	2148	0.316	1107	0.393	1159	0.332	2266	0.265
10	1398	0.448	1354	0.358	2751	0.296	1297	0.311	2057	0.240	3354	0.190
11	1824	0.454	675	0.624	2499	0.398	1690	0.315	1573	0.296	3263	0.196
12	1050	0.442	1084	0.408	2134	0.312	1747	0.299	1874	0.323	3621	0.216
13	442	0.715	945	0.547	1387	0.446	1135	0.478	862	0.426	1997	0.272
14	0	-	322	0.832	322	0.832	114	1.001	168	0.806	282	0.608
15	0	-	50	1.446	50	1.446	0	-	636	0.449	636	0.449
16	419	0.688	687	0.507	1106	0.440	267	0.831	69	1.411	336	0.700
17	211	0.950	232	1.017	442	0.621	45	1.385	312	0.632	356	0.623
18	0	-	0	-	0	-	0	-	208	0.876	208	0.876
19	344	0.861	0	-	344	0.861	230	0.953	375	0.684	605	0.518
20	1086	0.562	404	0.670	1490	0.414	818	0.396	867	0.441	1685	0.305
21	798	0.519	304	0.894	1102	0.426	1446	0.332	1396	0.324	2842	0.216
22	182	1.352	320	0.781	502	0.770	528	0.614	223	0.845	751	0.457
23	616	0.886	1027	0.493	1643	0.454	173	0.983	277	0.821	451	0.600
24	587	0.652	0	-	587	0.652	80	1.388	146	1.038	227	0.806
25	494	1.122	172	0.991	666	0.831	453	0.560	638	0.429	1092	0.343
26	743	0.555	427	0.676	1170	0.411	463	0.580	106	1.132	569	0.501
27	304	0.880	244	1.135	548	0.768	0	-	69	1.411	69	1.411
28	182	1.324	70	1.435	252	0.947	69	1.399	320	0.768	389	0.654
29	0	-	0	-	0	-	36	1.444	225	0.802	261	0.700
30	247	1.337	0	-	247	1.337	0	-	69	1.401	69	1.401
31	182	1.318	50	1.442	232	1.003	140	1.394	0	-	140	1.394
32	0	-	0	-	0	-	0	-	0	-	0	-
33	0	-	0	-	0	-	0	-	0	-	0	-
34	0	-	0	-	0	-	0	-	0	-	0	-
35	0	-	0	-	0	-	0	-	0	-	0	-
36	0	-	0	-	0	-	0	-	0	-	0	-
37	0	-	0	-	0	-	0	-	119	1.367	119	1.367
38	0	-	0	-	0	-	0	-	0	-	0	-
39	0	-	0	-	0	-	0	-	0	-	0	-
40	0	-	0	-	0	-	0	-	0	-	0	-
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	0	-	0	-
43	0	-	182	1.321	182	1.321	0	-	0	-	0	-
44	0	-	0	-	0	-	0	-	0	-	0	-
≥ 45	0	-	0	-	0	-	0	-	0	-	0	

Table B4: (continued)

Age	BT-TAR-OUT										Pooled	
		Male		Female		Total	Male		Female		Total	
	N	c.v.										
0	0	-	0	-	0	-	0	-	0	-	0	-
1	0	-	0	-	0	-	0	-	0	-	0	-
2	0	-	0	-	0	-	193	1.019	26	1.513	218	0.911
3	0	-	0	-	0	-	542	0.791	100	1.302	642	0.709
4	498	0.945	124	1.328	622	0.916	2581	0.378	1063	0.492	3644	0.345
5	124	1.346	0	-	124	1.346	928	0.467	840	0.512	1768	0.363
6	920	0.493	438	0.628	1359	0.347	6727	0.254	4797	0.270	11524	0.196
7	176	0.957	351	0.787	527	0.713	2243	0.320	2420	0.329	4663	0.254
8	384	0.907	248	0.884	631	0.656	2532	0.269	3387	0.265	5919	0.188
9	866	0.842	702	0.544	1568	0.584	3348	0.303	2634	0.268	5982	0.212
10	881	0.582	764	0.479	1645	0.417	3576	0.254	4174	0.187	7750	0.161
11	1686	0.392	796	0.508	2482	0.302	5201	0.228	3044	0.246	8245	0.171
12	888	0.408	351	0.774	1240	0.348	3686	0.214	3309	0.240	6995	0.159
13	135	1.129	0	-	135	1.129	1712	0.379	1806	0.346	3518	0.236
14	10	2.338	124	1.285	135	1.122	124	0.920	614	0.553	739	0.477
15	62	1.533	249	1.049	310	0.775	62	1.533	934	0.412	996	0.379
16	10	2.432	252	1.004	263	0.949	696	0.522	1009	0.435	1705	0.349
17	21	2.302	201	1.318	222	1.128	276	0.768	745	0.532	1020	0.420
18	201	1.342	0	-	201	1.342	201	1.342	208	0.876	409	0.783
19	0	-	201	1.313	201	1.313	574	0.640	576	0.625	1150	0.433
20	124	1.279	10	2.626	135	1.119	2029	0.351	1281	0.366	3310	0.248
21	10	2.501	263	0.945	273	0.914	2254	0.280	1963	0.299	4216	0.192
22	0	-	0	-	0	-	710	0.561	543	0.570	1253	0.405
23	0	-	124	1.295	124	1.295	789	0.721	1429	0.401	2218	0.363
24	62	1.492	124	1.290	186	0.880	729	0.551	271	0.816	1000	0.449
25	0	-	103	1.492	103	1.492	947	0.648	913	0.407	1860	0.372
26	0	-	124	1.289	124	1.289	1206	0.408	657	0.535	1863	0.311
27	0	-	0	-	0	-	304	0.880	314	0.935	618	0.699
28	10	2.329	10	2.519	21	2.240	262	0.956	400	0.666	662	0.531
29	0	-	0	-	0	-	36	1.444	225	0.802	261	0.700
30	0	-	124	1.269	124	1.269	247	1.337	194	0.952	441	0.869
31	0	-	0	-	0	-	321	0.969	50	1.442	371	0.828
32	0	-	0	-	0	-	0	-	0	-	0	-
33	0	-	0	-	0	-	0	-	0	-	0	-
34	0	-	0	-	0	-	0	-	0	-	0	-
35	0	-	0	-	0	-	0	-	0	-	0	-
36	0	-	0	-	0	-	0	-	0	-	0	-
37	0	-	0	-	0	-	0	-	119	1.367	119	1.367
38	0	-	0	-	0	-	0	-	0	-	0	-
39	0	-	0	-	0	-	0	-	0	-	0	-
40	0	-	0	-	0	-	0	-	0	-	0	-
41	0	-	0	-	0	-	0	-	0	-	0	-
42	0	-	0	-	0	-	0	-	0	-	0	-
43	0	-	0	-	0	-	0	-	182	1.321	182	1.321
44	0	-	0	-	0	-	0	-	0	-	0	-
≥ 45	0	-	0	-	0	-	0	-	0	-	0	-

APPENDIX C: TOTAL MORTALITY ESTIMATES
Table C1: Chapman-Robson estimates of total mortality by fishing year, fishery (in- and out-season BT-TAR strata combined), sex, and assumed age at full

		Assumed age at full recruitment (years)			
	4	5	6	7	8
$0.1444(0.1110,0.1779)$	$0.1589(0.1186,0.1999)$	$0.1652(0.1254,0.2088)$	$0.1835(0.1364,0.2387)$	$0.1955(0.1410,0.2659)$	
$0.1251(0.1015,0.1471)$	$0.1400(0.1118,0.1653)$	$0.1427(0.1191,0.1718)$	$0.1446(0.1217,0.1748)$	$0.1482(0.1236,0.1806)$	
$0.1327(0.1087,0.1520)$	$0.1470(0.1198,0.1699)$	$0.1508(0.1271,0.1760)$	$0.1585(0.1336,0.1868)$	$0.1644(0.1392,0.1951)$	
$0.1664(0.1332,0.2016)$	$0.1859(0.1471,0.2314)$	$0.1780(0.1461,0.2145)$	$0.1991(0.1575,0.2547)$	$0.2134(0.1617,0.2933)$	
$0.1198(0.1028,0.1409)$	$0.1331(0.1127,0.1593)$	$0.1400(0.1184,0.1664)$	$0.1527(0.1273,0.1869)$	$0.1619(0.1331,0.2044)$	
$0.1472(0.1225,0.1723)$	$0.1632(0.1348,0.1943)$	$0.1612(0.1397,0.1838)$	$0.1778(0.1526,0.2078)$	$0.1894(0.1595,0.2279)$	
$0.1570(0.1329,0.1817)$	$0.1744(0.1457,0.2051)$	$0.1722(0.1477,0.1995)$	$0.1915(0.1600,0.2296)$	$0.2051(0.1662,0.2565)$	
$0.1227(0.1070,0.1381)$	$0.1368(0.1177,0.1554)$	$0.1414(0.1237,0.1613)$	$0.1474(0.1296,0.1698)$	$0.1532(0.1339,0.1790)$	
$0.1392(0.1222,0.1549)$	$0.1546(0.1349,0.1731)$	$0.1555(0.1394,0.1721)$	$0.1675(0.1497,0.1876)$	$0.1761(0.1563,0.1994)$	
$0.1156(0.0929,0.1578)$	$0.1214(0.0982,0.1659)$	$0.1346(0.1072,0.1907)$	$0.1281(0.1013,0.1839)$	$0.1385(0.1065,0.2100)$	
$0.1094(0.0935,0.1361)$	$0.1188(0.1007,0.1497)$	$0.1303(0.1078,0.1730)$	$0.1327(0.1093,0.1753)$	$0.1415(0.1150,0.1898)$	
$0.1126(0.0965,0.1422)$	$0.1200(0.1027,0.1524)$	$0.1321(0.111,0.1750)$	$0.1297(0.1096,0.1676)$	$0.1397(0.1165,0.1812)$	
$0.1141(0.0949,0.1425)$	$0.1231(0.1018,0.1560)$	$0.1371(0.1104,0.1799)$	$0.1310(0.1105,0.1622)$	$0.1371(0.1131,0.1721)$	
$0.1073(0.0925,0.1255)$	$0.1172(0.0998,0.1402)$	$0.1313(0.1102,0.1602)$	$0.1286(0.1099,0.1522)$	$0.1355(0.1150,0.1606)$	
$0.1103(0.0962,0.1290)$	$0.1197(0.1039,0.1416)$	$0.1337(0.1144,0.1614)$	$0.1293(0.1151,0.1499)$	$0.1358(0.1189,0.1583)$	
$0.1152(0.0985,0.1406)$	$0.1221(0.1045,0.1501)$	$0.1359(0.1146,0.1706)$	$0.1292(0.1099,0.1603)$	$0.1379(0.1150,0.1752)$	
$0.1085(0.0970,0.1229)$	$0.1182(0.1049,0.1356)$	$0.1310(0.1144,0.1538)$	$0.1305(0.1149,0.1517)$	$0.1382(0.1211,0.1621)$	
$0.1118(0.1003,0.1288)$	$0.1199(0.1075,0.1392)$	$0.1331(0.1177,0.1579)$	$0.1297(0.1163,0.1506)$	$0.1380(0.1227,0.1606)$	

		Assumed age at full recruitment (years)	
9	10	11	12
$0.1444(0.1110,0.1779)$	$0.1589(0.1186,0.1999)$	$0.1652(0.1254,0.2088)$	$0.1835(0.1364,0.2387)$
$0.1251(0.1015,0.1471)$	$0.1400(0.1118,0.1653)$	$0.1427(0.1191,0.1718)$	$0.1446(0.1217,0.1748)$
$0.1327(0.1087,0.1520)$	$0.1470(0.1198,0.1699)$	$0.1508(0.1271,0.1760)$	$0.1585(0.1336,0.1868)$
$0.1664(0.1332,0.2016)$	$0.1859(0.1471,0.2314)$	$0.1780(0.1461,0.2145)$	$0.1991(0.1575,0.2547)$
$0.1198(0.1028,0.1409)$	$0.1331(0.1127,0.1593)$	$0.1400(0.1184,0.1664)$	$0.1527(0.1273,0.1869)$
$0.1472(0.1225,0.1723)$	$0.1632(0.1348,0.1943)$	$0.1612(0.1397,0.1838)$	$0.1778(0.1526,0.2078)$
$0.1570(0.1329,0.1817)$	$0.1744(0.1457,0.2051)$	$0.1722(0.1477,0.1995)$	$0.1915(0.1600,0.2296)$
$0.1227(0.1070,0.1381)$	$0.1368(0.1177,0.1554)$	$0.1414(0.1237,0.1613)$	$0.1474(0.1296,0.1698)$
$0.1392(0.1222,0.1549)$	$0.1546(0.1349,0.1731)$	$0.1555(0.1394,0.1721)$	$0.1675(0.1497,0.1876)$
$0.1156(0.0929,0.1578)$	$0.1214(0.0982,0.1659)$	$0.1346(0.1072,0.1907)$	$0.1281(0.1013,0.1839)$
$0.1094(0.0935,0.1361)$	$0.1188(0.1007,0.1497)$	$0.1303(0.1078,0.1730)$	$0.1327(0.1093,0.1753)$
$0.1126(0.0965,0.1422)$	$0.1200(0.1027,0.1524)$	$0.1321(0.1111,0.1750)$	$0.1297(0.1096,0.1676)$
$0.1141(0.0949,0.1425)$	$0.1231(0.1018,0.1560)$	$0.1371(0.1104,0.1799)$	$0.1310(0.1105,0.1622)$
$0.1073(0.0925,0.1255)$	$0.1172(0.0998,0.1402)$	$0.1313(0.1102,0.1602)$	$0.1286(0.1099,0.1522)$
$0.1103(0.0962,0.1290)$	$0.1197(0.1039,0.1416)$	$0.1337(0.1144,0.1614)$	$0.1293(0.1151,0.1499)$
$0.1152(0.0985,0.1406)$	$0.1221(0.1045,0.1501)$	$0.1359(0.1146,0.1706)$	$0.1292(0.1099,0.1603)$
$0.1085(0.0970,0.1229)$	$0.1182(0.1049,0.1356)$	$0.1310(0.1144,0.1538)$	$0.1305(0.1149,0.1517)$
$0.1118(0.1003,0.1288)$	$0.1199(0.1075,0.1392)$	$0.1331(0.1177,0.1579)$	$0.1297(0.1163,0.1506)$

邁

YVL-LG
SN-MOK

BT-TAR
2005-06

Year
2004-05

SN-MOK
All pooled

㐫

SN-MOK
All pooled

BT-TAR
SN-MOK
3
$\frac{0}{8}$
0
2
3

